479 research outputs found
PHYSICAL ACTIVITY LEVEL DOES NOT INFLUENCE THE NEUROMUSCULAR FATIGUE IN ADULTS
Introduction: Fatigue during voluntary muscle contractions is a complex and multifactorial phenomenon associated with central changes and adaptations of the neuromuscular system. Objective: The purpose of this study was to evaluate the fatigue induced by intermittent successive extension of the knee between active and inactive university students. Method: Twenty healthy men (âĽ18 years), voluntarily participated in this study. To determine the maximum voluntary isometric contraction (MVIC) of the knee extensors muscle group, three sets of isometric contractions of knee extension were performed for five seconds with five minutes of rest between sets. The fatigue protocol consisted of 10 sets of 10 maximal concentric contractions of the extensor on the right knee, performed at 75% of MVIC with an interval of 45". Results: Significant reductions were observed (p<0.01), both in isometric strength (-34Âą4%) and the dynamic strength (-40 Âą 3%). In addition, the slope of relationship strength x repetition was -0.79Âą0.07 Nm/repetitions and the magnitude of the effect reached -8.90. Conclusion: The protocol was useful to induce peripheral fatigue, although muscle strength is greater in the active group. In both isometric and dynamic action, muscle fatigue did not differ between groups
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
- âŚ