212 research outputs found

    Kesiapan Implementasi Otonomi Daerah di Municipio Liquica Timor-Leste

    Full text link
    Penelitan ini bertujuan untuk mendeskripsikan dan menganalisis implementasi otonomi daerah di Municipio Liquica Timor-Leste, serta untuk mengetahui factor-faktor yang turut mempengaruhi implementasi otonomi daerah di Municipio Liquica Timor-Leste. Penelitian ini menggunakan metode kualitatif deskriptif dengan teknik triangulasi. Lokasi penelitian dilaksanakan di Municipio Liquica Timor-Leste. Lokasi ini dipilih karena merupakan salah satu Municipio yang secara demografis berbatasan langsung dengan Posto Administrativo (Kecamatan) Atabae Municipio Bobonaro. Kesiapan implementasi otonomi daerah dari sisi sumber daya yakni menyangkut sarana dan prasarana yang ada di Municipio Liquica ini sudah siap untuk menerima otonomi daerah itu sendiri. Faktor dan upaya yang menghambat pelaksanaan implementasi otonomi daerah di Municipio Liquica yaitu: (a) Masih terbatasnya pengetahuan dan kemampuan dalam menggunakan empat bahasa yang ada, di mana tidak semua aparat Municipio menguasai empat bahasa tersebut. (b) Terbatasnya anggaran pelaksanaan implementasi otonomi daerah di Municipio Liquica. (c) Masih terbatasnya tenaga operasional implementasi otonomi daerah di Municipio Liquica

    Sensitivity of the Cherenkov Telescope Array to TeV photon emission from the Large Magellanic Cloud

    Get PDF
    A deep survey of the Large Magellanic Cloud at ∼0.1-100 TeV photon energies with the Cherenkov Telescope Array is planned. We assess the detection prospects based on a model for the emission of the galaxy, comprising the four known TeV emitters, mock populations of sources, and interstellar emission on galactic scales. We also assess the detectability of 30 Doradus and SN 1987A, and the constraints that can be derived on the nature of dark matter. The survey will allow for fine spectral studies of N 157B, N 132D, LMC P3, and 30 Doradus C, and half a dozen other sources should be revealed, mainly pulsar-powered objects. The remnant from SN 1987A could be detected if it produces cosmic-ray nuclei with a flat power-law spectrum at high energies, or with a steeper index 2.3-2.4 pending a flux increase by a factor of >3-4 over ∼2015-2035. Large-scale interstellar emission remains mostly out of reach of the survey if its >10 GeV spectrum has a soft photon index ∼2.7, but degree-scale 0.1-10 TeV pion-decay emission could be detected if the cosmic-ray spectrum hardens above >100 GeV. The 30 Doradus star-forming region is detectable if acceleration efficiency is on the order of 1−10 per cent of the mechanical luminosity and diffusion is suppressed by two orders of magnitude within <100 pc. Finally, the survey could probe the canonical velocity-averaged cross-section for self-annihilation of weakly interacting massive particles for cuspy Navarro-Frenk-White profiles

    Cosmology with the Laser Interferometer Space Antenna

    Get PDF
    The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational wave observations by LISA to probe the universe

    Sensitivity of the Cherenkov Telescope Array to spectral signatures of hadronic PeVatrons with application to Galactic Supernova Remnants

    Full text link
    The local Cosmic Ray (CR) energy spectrum exhibits a spectral softening at energies around 3~PeV. Sources which are capable of accelerating hadrons to such energies are called hadronic PeVatrons. However, hadronic PeVatrons have not yet been firmly identified within the Galaxy. Several source classes, including Galactic Supernova Remnants (SNRs), have been proposed as PeVatron candidates. The potential to search for hadronic PeVatrons with the Cherenkov Telescope Array (CTA) is assessed. The focus is on the usage of very high energy γ\gamma-ray spectral signatures for the identification of PeVatrons. Assuming that SNRs can accelerate CRs up to knee energies, the number of Galactic SNRs which can be identified as PeVatrons with CTA is estimated within a model for the evolution of SNRs. Additionally, the potential of a follow-up observation strategy under moonlight conditions for PeVatron searches is investigated. Statistical methods for the identification of PeVatrons are introduced, and realistic Monte--Carlo simulations of the response of the CTA observatory to the emission spectra from hadronic PeVatrons are performed. Based on simulations of a simplified model for the evolution for SNRs, the detection of a γ\gamma-ray signal from in average 9 Galactic PeVatron SNRs is expected to result from the scan of the Galactic plane with CTA after 10 hours of exposure. CTA is also shown to have excellent potential to confirm these sources as PeVatrons in deep observations with O(100)\mathcal{O}(100) hours of exposure per source.Comment: 34 pages, 16 figures, Accepted for publication in Astroparticle Physic

    Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre

    Get PDF
    We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models given a standard cuspy profile of the dark matter density distribution. Importantly, even for a cored profile, the projected sensitivity of CTA will be sufficient to probe various well-motivated models of thermally produced dark matter at the TeV scale. This is due to CTA's unprecedented sensitivity, angular and energy resolutions, and the planned observational strategy. The survey of the inner Galaxy will cover a much larger region than corresponding previous observational campaigns with imaging atmospheric Cherenkov telescopes. CTA will map with unprecedented precision the large-scale diffuse emission in high-energy gamma rays, constituting a background for dark matter searches for which we adopt state-of-the-art models based on current data. Throughout our analysis, we use up-to-date event reconstruction Monte Carlo tools developed by the CTA consortium, and pay special attention to quantifying the level of instrumental systematic uncertainties, as well as background template systematic errors, required to probe thermally produced dark matter at these energies.</p

    Clio’s (mis)adventures with Hermes, Hestia, and Hephaestus

    Get PDF
    This article shall reflect on how emerging technologies and the so-called “spatial turn” impact the historian’s craft. Looking at the past, the authors identify historical antecedents of both tendencies in the second generation of the Annales School. Eyeing the present and the future, the authors advance the concept of “border space” as an analytical tool to illuminate characteristics and trends in the digitized production of knowledge about the past. The article argues that some of the key values that characterize this border space – open-source scholarship, horizontal collaboration, and the free circulation of knowledge – can stimulate more democratic methods of producing historical scholarship. Keywords Digital humanities, digital history, Annales School, historiographical cultureEl artículo presenta una reflexión sobre el impacto de las nuevas tecnologías y el llamado “giro espacial” en el oficio del historiador. Con un enfoque en el pasado, el artículo busca en la segunda generación de la Escuela de Annales los antecedentes históricos de estas tendencias. Con un foco en el presente y el futuro, y tratando de realizar algunos ejercicios de diagnóstico y pronóstico, los autores proponen el concepto de “lugar de frontera” como un marco analítico capaz de iluminar algunas de las características y quizás algunas de las tendencias en la producción de conocimiento sobre el pasado. El artículo sostiene que algunos de los valores clave que caracterizan este espacio fronterizo, como la investigación de código abierto, la colaboración horizontal y la libre circulación del conocimiento, pueden estimular métodos más democráticos para la producción de investigaciones históricas. Palabras clave Humanidades digitales, historia digital, Escuela de Annales, cultura historiográfic

    Identification of Contractile Vacuole Proteins in Trypanosoma cruzi

    Get PDF
    Contractile vacuole complexes are critical components of cell volume regulation and have been shown to have other functional roles in several free-living protists. However, very little is known about the functions of the contractile vacuole complex of the parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, other than a role in osmoregulation. Identification of the protein composition of these organelles is important for understanding their physiological roles. We applied a combined proteomic and bioinfomatic approach to identify proteins localized to the contractile vacuole. Proteomic analysis of a T. cruzi fraction enriched for contractile vacuoles and analyzed by one-dimensional gel electrophoresis and LC-MS/MS resulted in the addition of 109 newly detected proteins to the group of expressed proteins of epimastigotes. We also identified different peptides that map to at least 39 members of the dispersed gene family 1 (DGF-1) providing evidence that many members of this family are simultaneously expressed in epimastigotes. Of the proteins present in the fraction we selected several homologues with known localizations in contractile vacuoles of other organisms and others that we expected to be present in these vacuoles on the basis of their potential roles. We determined the localization of each by expression as GFP-fusion proteins or with specific antibodies. Six of these putative proteins (Rab11, Rab32, AP180, ATPase subunit B, VAMP1, and phosphate transporter) predominantly localized to the vacuole bladder. TcSNARE2.1, TcSNARE2.2, and calmodulin localized to the spongiome. Calmodulin was also cytosolic. Our results demonstrate the utility of combining subcellular fractionation, proteomic analysis, and bioinformatic approaches for localization of organellar proteins that are difficult to detect with whole cell methodologies. The CV localization of the proteins investigated revealed potential novel roles of these organelles in phosphate metabolism and provided information on the potential participation of adaptor protein complexes in their biogenesis

    Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation

    Get PDF
    The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for γ\gamma-ray astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of γ\gamma-ray cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of γ\gamma-ray absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z=2z=2 and to constrain or detect γ\gamma-ray halos up to intergalactic-magnetic-field strengths of at least 0.3pG. Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from γ\gamma-ray astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of γ\gamma-ray cosmology
    corecore