82 research outputs found

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    The Dentate Gyrus of the Hippocampus: Roles of Transforming Growth Factor beta1 (TGFbeta1) and Adult Neurogenesis in the Expression of Spatial Memory

    No full text
    The dentate gyrus is a region that hosts most of the hippocampal cells in mammals. Nevertheless, its role in spatial memory remains poorly understood, especially in light of the recently-studied phenomenon of adult hippocampal neurogenesis and its possible role in aging and chronic brain disease. We found that chronic over-expression of transforming growth factor beta1 (TGFbeta1), a cytokine involved in neurodegenerative disease, results in several modifications of brain structure, including volumetric changes and persistent astrogliosis. Furthermore, TGFbeta1 over-expression affects the generation of new neurons, leading to an increased number of neurons in the dentate gyrus and deficits in spatial memory acquisition and storage in aged mice. Nonetheless, reducing neurogenesis via pharmacological treatment impairs spatial memory in juvenile mice but not in adult or aged mice. This suggests that the addition of new cells to hippocampal circuitry, and not the increased plasticity of these cells, is the most relevant role of neurogenesis in spatial memory. We tested this idea by modifying proliferation in the dentate gyrus at several ages using multiple techniques and evaluating the incorporation of newborn neurons into hippocampal circuitry. We found that all granule neurons, recently generated or not, have the same probability of being incorporated. Therefore, the number of new neurons participating in memory circuits is proportional to their availability. Our conclusion is that adult-generated cells have the same functional relevance as those generated during development. Together, our data show that the dentate gyrus is important for memory processing and that adult neurogenesis may be relevant to its functionality by optimizing the number of neurons for memory processing. The equilibrium between neurogenesis and optimal dentate gyrus size is disrupted when TGFbeta1 is chronically increased, which occurs in neurodegenerative pathologies, leading to cognitive impairment in aged animals.Ph

    Chemotherapy-Induced Cognitive Impairment and Hippocampal Neurogenesis: A Review of Physiological Mechanisms and Interventions

    No full text
    A wide range of cognitive deficits, including memory loss associated with hippocampal dysfunction, have been widely reported in cancer survivors who received chemotherapy. Changes in both white matter and gray matter volume have been observed following chemotherapy treatment, with reduced volume in the medial temporal lobe thought to be due in part to reductions in hippocampal neurogenesis. Pre-clinical rodent models confirm that common chemotherapeutic agents used to treat various forms of non-CNS cancers reduce rates of hippocampal neurogenesis and impair performance on hippocampally-mediated learning and memory tasks. We review the pre-clinical rodent literature to identify how various chemotherapeutic drugs affect hippocampal neurogenesis and induce cognitive impairment. We also review factors such as physical exercise and environmental stimulation that may protect against chemotherapy-induced neurogenic suppression and hippocampal neurotoxicity. Finally, we review pharmacological interventions that target the hippocampus and are designed to prevent or reduce the cognitive and neurotoxic side effects of chemotherapy

    Neonatal inflammatory pain increases hippocampal neurogenesis in rat pups

    Get PDF
    Preterm infants undergo several painful procedures during their stay in neonatal intensive care units. Previous studies suggest that early painful experiences may have an impact on brain development. Here, we used an animal model to investigate the effect of neonatal pain on the generation of new neurons in the dentate gyrus region of the hippocampus. Rat pups received intraplantar injections of complete Freund's adjuvant (CFA), a painful inflammatory agent, on either PI or P8 and were sacrificed on P22. We found that rat pups injected with CFA on P8 had more BrdU-labeled cells and a higher density of cells expressing doublecortin (DCX) in the subgranular zone of the dentate gyrus. No change in BrdU-labeling or DCX expression was observed in pups injected with CFA on P1. These findings indicate that neonatal pain can increase hippocampal neurogenesis, suggesting that early painful experiences may shape brain development and thereby influence behavioral outcome. (C) 2011 Elsevier Ireland Ltd. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Federal de São Paulo, Dept Pediat, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Fisiol, São Paulo, BrazilHosp Sick Children, Toronto, ON M5G 1X8, CanadaUniv Toronto, Inst Med Sci, Toronto, ON M5S 1A1, CanadaUniversidade Federal de São Paulo, Dept Pediat, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Fisiol, São Paulo, BrazilFAPESP: 2009/53646-0Web of Scienc
    corecore