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a  b  s  t  r  a  c  t

Preterm  infants  undergo  several  painful  procedures  during  their  stay  in  neonatal  intensive  care  units.
Previous  studies  suggest  that  early  painful  experiences  may  have  an  impact  on  brain  development.  Here,
we  used  an  animal  model  to investigate  the  effect  of  neonatal  pain  on  the  generation  of  new  neurons
in  the  dentate  gyrus  region  of  the  hippocampus.  Rat  pups  received  intraplantar  injections  of  complete
Freund’s  adjuvant  (CFA),  a painful  inflammatory  agent,  on  either  P1  or  P8  and  were  sacrificed  on  P22.  We
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found  that  rat  pups  injected  with  CFA  on P8  had  more  BrdU-labeled  cells  and  a higher  density  of  cells
expressing  doublecortin  (DCX)  in the  subgranular  zone  of  the  dentate  gyrus.  No  change  in  BrdU-labeling
or  DCX  expression  was  observed  in  pups  injected  with  CFA  on  P1.  These  findings  indicate  that  neonatal
pain  can  increase  hippocampal  neurogenesis,  suggesting  that  early  painful  experiences  may  shape  brain

 influ
oublecortin
at

development  and  thereby

s the survival rate of prematurely born infants continues to
ise due to advances in neonatology, greater numbers of babies
re spending time in neonatal intensive care units, where they
ndergo several painful procedures such as heel pricks, endotra-
hael suction, and intravenous cannula insertion [5]. These painful
xperiences occur at a time when the brain is rapidly developing
nd therefore particularly susceptible to exogenous and endoge-
ous insults [41]. Thus, by affecting brain development, early
ainful experiences may  exert a profound and long-lasting influ-
nce on behavioral outcome. Studies of children born prematurely
uggest that neonatal pain is linked to abnormalities in cognitive,
motional, and psychosocial function later in life [1,9,22]. Currently,
owever, the changes in brain function that underlie the effects of
arly painful experiences remain unclear.

The hippocampus is one brain region that is likely to be involved
n the developmental abnormalities associated with neonatal pain
iven its vulnerability to early traumatic events [4,34] and its role
n cognition and emotion [6,18]. A unique characteristic of the

ippocampus is that, unlike most brain regions, it continues to gen-
rate new neurons after birth and into adulthood [14]. After their
eneration in the subgranular zone (SGZ) of the dentate gyrus, new
eurons migrate into the granule cell layer and become structurally

∗ Corresponding author at: Rua Vicente Felix 77, Apt 09, São Paulo 01410-020, SP,
razil. Tel.: +55 11 30642663; fax: +55 11 50840535.

E-mail address: ruthgbr@netpoint.com.br (R. Guinsburg).

304-3940 ©  2011 Elsevier Ireland Ltd. 
oi:10.1016/j.neulet.2011.06.047

Open access under the Elsevier OA license.
ence  behavioral  outcome.
© 2011 Elsevier Ireland Ltd. 

and functionally integrated into existing hippocampal circuitry
[43]. The detection of new hippocampal neurons can be achieved
using two complimentary approaches. First, new cells can incor-
porate synthetic nucleosides, such as the thymidine analogue 5-
bromo-2′-deoxyuridine (BrdU) [12], into their DNA during replica-
tion. Second, new neurons naturally express specific markers, such
as doublecortin (DCX) [10], at certain stages in their maturation. In
both approaches, the new cells (i.e., BrdU+ or DCX+ cells) can be
identified in brain tissue using immunohistochemical techniques.

In  this study, we  used an animal model to investigate the effect
of chronic neonatal pain on the generation of new hippocampal
neurons. Rat pups received an intraplantar injection of complete
Freund’s adjuvant (CFA), an inflammatory agent used in experi-
mental studies to induce pain that persists for several days [37]. To
examine whether the effect of neonatal pain on hippocampal neu-
rogenesis differs depending on the age at which it is experienced,
injections of CFA occurred on either postnatal day (P) 1 or 8, the
ages at which the rat brain is roughly equivalent to a preterm and
term human brain, respectively [16].

All experimental procedures were approved by the Federal Uni-
versity of São Paulo Research Ethics Board. Wistar Han rats were
bred at the Animal Resource Center of the Federal University of São
Paulo and housed in plastic cages in a laboratory equipped with
an automatic temperature control system (23 ± 2 ◦C), ventilation, a

Open access under the Elsevier OA license.
12 h light-dark cycle (lights on at 07:00 h), and unrestricted access
to food and water. The day of birth was  designated as P0. Litters
were culled to 8 pups within 24 h after birth, and body weights
were measured on P1, P8, P15, and P22.
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Table 1
Injection of CFA did not affect pup body weight (mean ± SEM).

Group Body weight (g)

P1 P8 P15 P22

P1 saline 6.64 ± .17 17.72 ± .45 32.19 ± .84 47.07 ± 1.53
P1  CFA 6.80 ± .16 17.34 ± .42 31.30 ± .78 45.99 ± 1.41
A.T.F.S. Leslie et al. / Neuros

On either P1 or P8, rat pups received a single subcutaneous injec-
ion of CFA (25 �l; Sigma) or 0.9% saline (25 �l) into the plantar
urface of the left hind paw and were returned to their home cages
P1 CFA n = 27, P1 saline n = 23, P8 CFA n = 18, P8 saline n = 17). Each
xperimental group contained a maximum of one male and one
emale pup from each litter. Pups were identified using marks from
ermanent marker pens of different colours.

For pups injected with CFA or saline on P1, BrdU (100 mg/kg,
.p., Sigma) dissolved in 0.007 N NaOH/0.9% saline was  injected on
ither P8 (CFA n = 6, saline n = 5) or P15 (CFA n = 21, saline n = 18).
or pups injected with CFA or saline on P8, BrdU was  injected on
15. A total of 4 injections were given to each pup, with 6 h between
ach injection.

On P22, pups were deeply anesthetised with sodium pento-
arbital (150 mg/kg; i.p.) and perfused transcardially with 0.9%
aline followed by 4% paraformaldehyde in 0.1 M sodium phos-
hate buffer (pH 7.4). Brains were removed, post-fixed overnight in
% paraformaldehyde, and embedded in paraffin. Coronal sections
10 �m)  were obtained across the entire dorsal-ventral extension
f the dentate gyrus using a microtome. After sectioning, slides
nderwent deparaffinization. Six sections at regular intervals of
pproximately 1 mm were selected from each animal for BrdU and
CX immunohistochemistry. BrdU labeling was performed for all
nimals, and DCX labeling was performed for a random subset of
nimals from each experimental group (P1 CFA n = 6, P1 saline n = 5,
8 CFA n = 5, P8 saline n = 5).

For BrdU labeling, slides were treated with 2 N HCl at 37 ◦C
or 20 min  to expose the BrdU antigen. Slides were then incu-
ated with the primary antibody (monoclonal rat anti-BrdU,
:200, Accurate Chemicals) at room temperature overnight and
he secondary antibody (biotinylated goat anti-rat; 1:200, Jack-
on Immuno-research) at room temperature for 2 h. Antibodies
ere diluted in blocking solution containing 0.05% goat serum and

.1% Triton X-100 dissolved in PBS. BrdU+ cells were visualized
sing avidin–biotin-peroxidase complex (ABC, Vector Laborato-
ies) followed by diaminobenzidine (DAB, Sigma). Slides were
ounterstained with Harris Hematoxylin (Sigma), dehydrated, and
overslipped with Permount (Sigma). BrdU+ cells were manually
ounted from the SGZ (at the junction between the granule cell
ayer and the hilus) using a microscope (Nikon Eclipse) with a 40×
bjective.

For DCX labeling, slides were treated with 0.01 M citrate buffer
6.0 pH) in a 97 ◦C steamer for 1 h. Slides were then incubated with
he primary antibody (rabbit anti-DCX, 1:1000, Cell Signaling) at
oom temperature overnight and the secondary antibody (biotiny-
ated goat anti-rabbit, 1:2000, Jackson Laboratories) at room
emperature for 2 h. DCX+ cells were visualized using ABC followed
y DAB. Slides were counterstained with Harris Hematoxylin,
ehydrated, and coverslipped with Permount. Quantification of
CX+ cells was performed using a microscope (Olympus BX61)
ttached to a digital camera (Retiga 11.0) and motorized stage (MBF
ioscience). Using Stereo Investigator software (MBF Bioscience),

mages of 10 uniformly distributed areas (160 �m × 200 �m)
rom each dentate gyrus were captured using a 40× objective.
CX+ cells were manually counted from the images using Image

 software.
For co-localization of BrdU and DCX, we used Tyramide Signal

mplification (TSA) protocol. Sections were incubated with a mix-
ure of primary antibodies, anti BrdU 1:500 (Accurate Chemical)
nd anti DCX 1:100 (Santa Cruz) at room temperature overnight,
nd a mixture of secondary fluorescence-tagged antibodies, anti rat
orseradish Peroxidase 1:500 (Cell Signaling) and Alexa Fluor® 568

onjugated 1:300 (Invitrogen) at room temperature for 2 h. Rinsed
ections were mounted onto gelatine-subbed slides and cover-
lipped with Vector Vectashield. All double stained cells for DCX
nd BrdU were quantified manually in a series of coronal sections
P8  saline 6.65 ± .17 17.79 ± .46 31.39 ± .87 46.82 ± 1.57
P8  CFA 6.83 ± .21 17.65 ± .55 30.38 ± 1.03 45.77 ± 1.87

covering the anterior–posterior extent of the hippocampus using
an Olympus microscope BX61 attached to a digital camera Retiga
11.0 and a MBF  motorized stage. The percentage of co-localization
was  calculated by dividing the number of double-labeled cells by
the number of BrdU+ cells.

Body weights were analyzed using three-way ANOVA (SPSS)
with treatment (CFA or saline) and age at treatment (P1 or P8) as
between-subject factors and age at weighing (P1, P8, P15, or P22)
as a within-subject factor. BrdU data were analyzed using two-way
ANOVA with treatment and age at BrdU injection (P8 or P15) as
between-subject factors and one-way ANOVA with treatment as
a between-subject factor. DCX data were analyzed using one-way
ANOVA with treatment as a between-subject factor.

Rat pups treated with CFA exhibited inflammation around the
injection site with oedema and redness lasting 2–4 days. Pups
treated with saline showed no signs of inflammation. All pups
gained weight across the duration of the experiment (Table 1)
[F(3, 192) = 2372.80, p < .001], with no significant differences in
weight gain among treatments (p > .05).

Among pups that were treated on P1, we  found more BrdU+ cells
in the SGZ when BrdU was injected on P8 compared to when BrdU
was  injected on P15 [F(1, 40) = 59.31, p < .001]. However, regardless
of when BrdU was injected, there were no differences in BrdU+
cell number between pups treated with CFA and pups treated with
saline (Fig. 1A) [p > .05]. In contrast, among pups that were treated
on P8, we  found that pups treated with CFA had more BrdU+ cells in
the SGZ (Fig. 1B and C) compared to pups treated with saline when
BrdU was  injected on P15 (Fig. 1B and D) [F(1, 33) = 6.48, p = .016]. The
proportion of BrdU+ cells that were also DCX+ was approximately
25% for both groups (Fig. 1B and E).

Similarly, there was  no difference in DCX+ cell density in the
SGZ between pups treated with CFA on P1 and pups treated with
saline (Fig. 2A) [p > .05]. However, pups treated with CFA on P8 had
higher densities of DCX+ cells compared to pups treated with saline
(Fig. 2B–D) [F(1, 8) = 12.82, p = .007].

We examined the effect of chronic neonatal pain on the
generation of new neurons in the dentate gyrus region of the
hippocampus. We  found that intraplantar injection of rat pups
with the inflammatory agent CFA on P8 increased the number of
BrdU+ cells present in the SGZ two weeks after the painful event.
We also found an increase in the density of cells that expressed
DCX, a marker expressed by young neurons predominately within
the first two  weeks following cell division [10]. We  observed no
change in BrdU+ cell number or DCX+ cell density when CFA was
injected on P1. Together, these findings provide converging evi-
dence that early painful experiences can increase in hippocampal
neurogenesis.

The number of new cells in the dentate gyrus at any given
moment is the result of multiple processes including the prolifera-
tion of cells from a progenitor population and the survival of those
cells as they mature and integrate into the existing neural circuitry
[14]. In this initial study, we  chose to investigate whether neonatal

pain affects the early stages of hippocampal neurogenesis by inject-
ing BrdU one week after initiation of the painful stimulus on P8 and
quantifying the number of BrdU+ cells one week after BrdU injec-
tion. The observed increase in BrdU+ cells in pups that experienced
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Fig. 1. Effect of neonatal pain on BrdU labeling in the SGZ of the dentate gyrus. (A) There were no differences in the number of BrdU+ cells between pups injected with CFA
o ifican
n 8 sali
a CL = g

p
e
n
B
n
e
p
c

F
o
o

n  P1 and pups injected with saline on P1. (B) Pups injected with CFA on P8 had sign
umbers of BrdU+ cells that were also DCX+. Representative images BrdU+ cells in P
nd  a BrdU+/DCX+ cell in P8 pups (white arrow in E), magnification 100×. *p < .05. G

ain starting on P8 could therefore be due to an enhancement in
ither the proliferation or the short-term (i.e., 7-day) survival of
ew cells. However, we observed no change in the proportion of
rdU+ cells that were also DCX+, suggesting that neonatal pain has

o effect on the differentiation of new cells into neurons. To further
xamine the effect of neonatal pain on different stages of hippocam-
al neurogenesis, future studies could assess the number of BrdU+
ells in the hours immediately following BrdU injection (i.e., prolif-

ig. 2. Effect of neonatal pain on DCX expression in the SGZ of the dentate gyrus. (A) Ther
n  P1 and pups injected with saline on P1. (B) Pups injected with CFA on P8 had significa
f  DCX+ cells in P8 saline pups, magnification 40× (C) and DCX+ cells in P8 CFA pups, mag
tly more BrdU+ cells than pups injected with saline on P8. Both groups had similar
ne pups, magnification 20× (C), BrdU+ cells in P8 CFA pups, magnification 20× (D),
ranule cell layer, SGZ = subgranular zone. Scale bars = 40 �m in CD, 100 �m in (E).

eration) and after a delay of several days or weeks (i.e., survival), as
well as their morphological development (i.e., dendritic braching,
spines).

The impact of traumatic events on hippocampal neurogene-

sis depends on the nature of the insult and the developmental
stage at which it occurs. For instance, in rodents, hippocampal
neurogenesis is decreased after prenatal stress [28], postnatal
lead poisoning [40], and adult social isolation [31], whereas it

e were no differences in the number of DCX+ cells between pups injected with CFA
ntly more DCX+ cells than pups injected with saline on P8. Representative images
nification 40× (D). *p < .05. GCL = granule cell layer. Scale bars = 100 �m in CD.
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s increased after birth asphyxia [38], juvenile malnutrition [26],
nd adult electroconvulsive seizures [33]. Little is known, how-
ver, about how the generation of new hippocampal neurons is
ffected by pain. In contrast to our present finding that persis-
ant inflammatory pain induced by CFA injection on P8 increased
ippocampal neurogenesis, we previously found that acute pain

nduced by multiple needle pricks between P1 and P7 had no
ffect [29], suggesting that only certain types of painful experi-
nces alter hippocampal neurogenesis during the neonatal period.
oreover, Duric and McCarson [17] found that three CFA injec-

ions during young adulthood decreased the generation of new
ippocampal neurons, suggesting that the direction of the effect
f pain on hippocampal neurogenesis depends on developmental
tage.

Surprisingly, although there was an increase in hippocampal
eurogenesis after CFA injection on P8, we observed no change
fter CFA injection on P1. One possible reason is that there may
e maturational differences in the brain systems that respond to
eonatal pain. Particularly relevant to the present findings are
otential age-related differences in corticosteroid or opioid neu-
otransmission, as both hormonal systems are altered by neonatal
ain [21,27] and influence the generation of new hippocampal
eurons [11,23].  For instance, in a study on the ontogeny of
ypothalamic-pituitary–adrenal (HPA) axis function, P7 was the
arliest age at which rat pups mounted a hormonal response to

 stressor [39]. Thus, neonatal pain might activate the HPA axis
t P8 but not P1, leading to a change in hippocampal neurogen-
sis only in P8 pups. Evidence from human studies indicates that
eonatal pain produces a short-term decrease in basal and evoked
tress hormone levels [19,20],  which may  thereby promote the
eneration of new hippocampal neurons shortly after the painful
xperience [25].

A second possible reason for why pain increased hippocam-
al neurogenesis among P8 but not P1 pups is that there may be
ge-related differences in maternal care, which has been shown
o influence hippocampal development [30]. Rat pups subjected to
aily needle pricks from P2 to 14 were found to receive more lick-

ng and grooming from their mother on P6 compared to pups that
id not experience pain [42]. However, it is not known whether an

ncrease in maternal care toward injured pups is of the same magni-
ude on different days of development. The frequency of maternal
are behaviors such as licking and active nursing is highest dur-
ng the first couple days after birth and then gradually decreases
cross subsequent days [13,32]. Therefore, the increase in mater-
al care toward injured pups may  be more dramatic at P8 when the
ackground level of care is relatively low, compared to at P1 when
aternal care is already at peak levels.
In conclusion, we found that, although no difference on the pro-

ortion of double labeled cells was identified, chronic neonatal
nflammatory pain can increase in the generation of new neurons
n the dentate gyrus region of the hippocampus, indicating that
arly painful experiences may  have a significant impact on brain
evelopment. Because the first few postnatal weeks are a period of
apid hippocampal growth in the rat, with total hippocampal vol-
me  increasing 26% daily from P1 to P7 and 12% daily from P7 to P21
7], even a brief increase in the generation of neurons during this
eriod could have a significant impact on brain development. Inter-
stingly, children born preterm, and hence subjected to repeated
ainful procedures, have been found to have smaller hippocampi
han children born at term [24,36],  raising the possibility that a
rief increase in neurogenesis induced by neonatal pain could be
ollowed by a compensatory decline in subsequent hippocampal

rowth. These results suggest that altered hippocampal growth
ould underlie the cognitive, emotional, and social abnormalities
bserved in rodents [2,3,8] and humans [22] who experienced pain
arly in life.
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