101 research outputs found
Discovering HIV related information by means of association rules and machine learning
Acquired immunodeficiency syndrome (AIDS) is still one of the main health problems worldwide. It is therefore essential to keep making progress in improving the prognosis and quality of life of affected patients. One way to advance along this pathway is to uncover connections between other disorders associated with HIV/AIDS-so that they can be anticipated and possibly mitigated. We propose to achieve this by using Association Rules (ARs). They allow us to represent the dependencies between a number of diseases and other specific diseases. However, classical techniques systematically generate every AR meeting some minimal conditions on data frequency, hence generating a vast amount of uninteresting ARs, which need to be filtered out. The lack of manually annotated ARs has favored unsupervised filtering, even though they produce limited results. In this paper, we propose a semi-supervised system, able to identify relevant ARs among HIV-related diseases with a minimal amount of annotated training data. Our system has been able to extract a good number of relationships between HIV-related diseases that have been previously detected in the literature but are scattered and are often little known. Furthermore, a number of plausible new relationships have shown up which deserve further investigation by qualified medical experts.This study has been partially supported by the Spanish Ministry of Science and Innovation within the DOTTHEALTH Project (MCI/AEI/FEDER, UE) under Grant PID2019-106942RB-C32, the OBSER-MENH Project (MCIN/AEI/10.13039/501100011033 and UE (“NextGenerationEU”/PRTR)) under Grant TED2021-130398B-C21 and the project RAICES (IMIENS 2022), PI18CIII/00004 “Infobanco para uso secundario de datos basado en estándares de tecnología y conocimiento: implementación y evaluación de un infobanco de salud para CoRIS (Info-bank for the secondary use of data based on technology and knowledge standards: implementation and evaluation of a health info-bank for CoRIS) - SmartPITeS” and PI18CIII/00019 - PI18/00890 - PI18/00981 “Arquitectura normalizada de datos clínicos para la generación de infobancos y su uso secundario en investigación: solución tecnológica (Clinical data normalized architecture for the generation of info-banks and their secondary use in research: technological solution) - CAMAMA 4” from Fondo de Investigación Sanitaria (FIS) Plan Nacional de I+D+i. The RIS cohort (CoRIS) is supported by the Instituto de Salud Carlos III through the Red Temática de Investigación Cooperativa en Sida (RD06/006, RD12/0017/0018 and RD16/0002/0006) as part of the Plan Nacional R+D+I and co-financed by ISCIII-Subdirección General de Evaluación and el Fondo Europeo de Desarrollo Regional (FEDER). The list of members of the Cohort of the Spanish HIV Research Network (CoRIS) is included in the Supplementary Material. Additional relationships between HIV-related diseases confirmed or discarded are included as Supplementary Material. This study would not have been possible without the collaboration of all patients, medical and nursing staff and data mangers who have taken part in the Project.S
Use of 1H and 31P HRMAS to evaluate the relationship between quantitative alterations in metabolite concentrations and tissue features in human brain tumour biopsies
[EN] Quantitative multinuclear high-resolution magic angle
spinning (HRMAS) was performed in order to determine
the tissue pH values of and the absolute metabolite concentrations
in 33 samples of human brain tumour tissue. Metabolite
concentrations were quantified by 1D 1
H and 31P HRMAS
using the electronic reference to in vivo concentrations
(ERETIC) synthetic signal. 1
H–1
H homonuclear and 1
H–31P
heteronuclear correlation experiments enabled the direct assessment
of the 1
H–31P spin systems for signals that suffered from
overlapping in the 1D 1
H spectra, and linked the information
present in the 1D 1
H and 31P spectra. Afterwards, the main
histological features were determined, and high heterogeneity
in the tumour content, necrotic content and nonaffected tissue
content was observed. The metabolite profiles obtained by
HRMAS showed characteristics typical of tumour tissues: rather
low levels of energetic molecules and increased concentrations
of protective metabolites. Nevertheless, these
characteristics were more strongly correlated with the total
amount of living tissue than with the tumour cell contents of
the samples alone, which could indicate that the sampling
conditions make a significant contribution aside from the effect
of tumour development in vivo. The use of methylene diphosphonic
acid as a chemical shift and concentration reference for
the 31P HRMAS spectra of tissues presented important drawbacks
due to its interaction with the tissue. Moreover, the pH
data obtained from 31P HRMAS enabled us to establish a
correlation between the pH and the distance between the
N(CH3)3 signals of phosphocholine and choline in 1
H spectra
of the tissue in these tumour samples.The authors acknowledge the SCSIE-University of Valencia Microscopy Service for the histological preparations. They also acknowledge Martial Piotto (Bruker BioSpin, France) for providing the ERETIC synthetic signal. Furthermore, they acknowledge financial support from the Spanish Government project SAF2007-6547, the Generalitat Valenciana project GVACOMP2009-303, and the E.U.'s VI Framework Programme via the project "Web accessible MR decision support system for brain tumor diagnosis and prognosis, incorporating in vivo and ex vivo genomic and metabolomic data" (FP6-2002-LSH 503094). CIBER-BBN is an initiative funded by the VI National R&D&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions, and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.Esteve Moya, V.; Celda, B.; Martínez Bisbal, MC. (2012). Use of 1H and 31P HRMAS to evaluate the relationship between quantitative alterations in metabolite concentrations and tissue features in human brain tumour biopsies. Analytical and Bioanalytical Chemistry. 403:2611-2625. https://doi.org/10.1007/s00216-012-6001-zS26112625403Cheng LL, Chang IW, Louis DN, Gonzalez RG (1998) Cancer Res 58:1825–1832Opstad KS, Bell BA, Griffiths JR, Howe FA (2008) Magn Reson Med 60:1237–1242Sjobakk TE, Johansen R, Bathen TF, Sonnewald U, Juul R, Torp SH, Lundgren S, Gribbestad IS (2008) NMR Biomed 21:175–185Martinez-Bisbal MC, Marti-Bonmati L, Piquer J, Revert A, Ferrer P, Llacer JL, Piotto M, Assemat O, Celda B (2004) NMR Biomed 17:191–205Erb G, Elbayed K, Piotto M, Raya J, Neuville A, Mohr M, Maitrot D, Kehrli P, Namer IJ (2008) Magn Reson Med 59:959–965Wilson M, Davies NP, Brundler MA, McConville C, Grundy RG, Peet AC (2009) Mol Cancer 8:6Martinez-Bisbal MC, Monleon D, Assemat O, Piotto M, Piquer J, Llacer JL, Celda B (2009) NMR Biomed 22:199–206Martínez-Granados B, Monleón D, Martínez-Bisbal MC, Rodrigo JM, del Olmo J, Lluch P, Ferrández A, Martí-Bonmatí L, Celda B (2006) NMR Biomed 19:90–100Hubesch B, Sappey-Marinier D, Roth K, Meyerhoff DJ, Matson GB, Weiner MW (1990) Radiology 174:401–409Albers MJ, Krieger MD, Gonzalez-Gomez I, Gilles FH, McComb JG, Nelson MD Jr, Bluml S (2005) Magn Reson Med 53:22–29Wijnen JP, Scheenen TW, Klomp DW, Heerschap A (2010) NMR Biomed 23:968–976Podo F (1999) NMR Biomed 12:413–439Griffiths JR, Cady E, Edwards RH, McCready VR, Wilkie DR, Wiltshaw E (1983) Lancet 1:1435–1436Robitaille PL, Robitaille PA, Gordon Brown G, Brown GG (1991) J Magn Reson 92:73–84, 1969Griffiths JR (1991) Br J Cancer 64:425–427Payne GS, Troy H, Vaidya SJ, Griffiths JR, Leach MO, Chung YL (2006) NMR Biomed 19:593–598De Silva SS, Payne GS, Thomas V, Carter PG, Ind TE, deSouza NM (2009) NMR Biomed 22:191–198Wang Y, Cloarec O, Tang H, Lindon JC, Holmes E, Kochhar S, Nicholson JK (2008) Anal Chem 80:1058–1066Lehnhardt FG, Rohn G, Ernestus RI, Grune M, Hoehn M (2001) NMR Biomed 14:307–317Srivastava NK, Pradhan S, Gowda GA, Kumar R (2010) NMR Biomed 23:113–122Akoka S, Barantin L, Trierweiler M (1999) Anal Chem 71:2554–2557Albers MJ, Butler TN, Rahwa I, Bao N, Keshari KR, Swanson MG, Kurhanewicz J (2009) Magn Reson Med 61:525–532Ben Sellem D, Elbayed K, Neuville A, Moussallieh FM, Lang-Averous G, Piotto M, Bellocq JP, Namer IJ (2011) J Oncol 2011:174019Bourne R, Dzendrowskyj T, Mountford C (2003) NMR Biomed 16:96–101Martinez-Bisbal MC, Esteve V, Martinez-Granados B, Celda B (2011) J Biomed Biotechnol 2011:763684, Epub 2010 Sep 5Celda B, Montelione GT (1993) J Magn Reson B 101:189–193Esteve V, Celda B (2008) Magn Reson Mater Phys MAGMA 21:484–484Collins TJ (2007) Biotechniques 43:25–30Govindaraju V, Young K, Maudsley AA (2000) NMR Biomed 13:129–153Fan TW-M (1996) Prog Nucl Magn Reson Spectrosc 28:161–219Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Kent Wenger R, Yao H, Markley JL (2008) Nucleic Acids Res 36:D402–D408Kriat M, Vion-Dury J, Confort-Gouny S, Favre R, Viout P, Sciaky M, Sari H, Cozzone PJ (1993) J Lipid Res 34:1009–1019Subramanian A, Shankar Joshi B, Roy AD, Roy R, Gupta V, Dang RS (2008) NMR Biomed 21:272–288Daykin CA, Corcoran O, Hansen SH, Bjornsdottir I, Cornett C, Connor SC, Lindon JC, Nicholson JK (2001) Anal Chem 73:1084–1090Griffin JL, Lehtimaki KK, Valonen PK, Grohn OH, Kettunen MI, Yla-Herttuala S, Pitkanen A, Nicholson JK, Kauppinen RA (2003) Cancer Res 63:3195–3201Petroff OAC, Prichard JW (1995) In: Kraicer J, Dixon SJ (eds) Methods in neurosciences. Academic, San DiegoBarton S, Howe F, Tomlins A, Cudlip S, Nicholson J, Anthony Bell B, Griffiths J (1999) Magn Reson Mater Phys Biol Med 8:121–128Sitter B, Sonnewald U, Spraul M, Fjosne HE, Gribbestad IS (2002) NMR Biomed 15:327–337Coen M, Hong YS, Cloarec O, Rhode CM, Reily MD, Robertson DG, Holmes E, Lindon JC, Nicholson JK (2007) Anal Chem 79:8956–8966Russell D, Rubinstein LJ (1998) Russel and Rubinstein's pathology of tumors of the nervous system. Arnold, LondonTynkkynen T, Tiainen M, Soininen P, Laatikainen R (2009) Anal Chim Acta 648:105–112Kjaergaard M, Brander S, Poulsen F (2011) J Biomol NMR 49:139–149Robert O, Sabatier J, Desoubzdanne D, Lalande J, Balayssac S, Gilard V, Martino R, Malet-Martino M (2011) Anal Bioanal Chem 399:987–999Chadzynski GL, Bender B, Groeger A, Erb M, Klose U (2011) J Magn Reson 212:55–63Weljie AM, Jirik FR (2011) Int J Biochem Cell Biol 43:981–989Barba I, Cabanas ME, Arus C (1999) Cancer Res 59:1861–1868Liimatainen T, Hakumaki JM, Kauppinen RA, Ala-Korpela M (2009) NMR Biomed 22:272–279Opstad KS, Bell BA, Griffiths JR, Howe FA (2008) NMR Biomed 21:677–685Schmitz JE, Kettunen MI, Hu D, Brindle KM (2005) Magn Reson Med 54:43–50Glunde K, Artemov D, Penet MF, Jacobs MA, Bhujwalla ZM (2010) Chem Rev 110:3043–3059Hertz L (2008) Neuropharmacology 55:289–309Takahashi T, Otsuguro K, Ohta T, Ito S (2010) Br J Pharmacol 161:1806–181
Remodeling of the Actin/Spectrin Membrane-associated Periodic Skeleton, Growth Cone Collapse and F-Actin Decrease during Axonal Degeneration
Axonal degeneration occurs in the developing nervous system for the appropriate establishment of mature circuits, and is also a hallmark of diverse neurodegenerative diseases. Despite recent interest in the field, little is known about the changes (and possible role) of the cytoskeleton during axonal degeneration. We studied the actin cytoskeleton in an in vitro model of developmental pruning induced by trophic factor withdrawal (TFW). We found that F-actin decrease and growth cone collapse (GCC) occur early after TFW; however, treatments that prevent axonal fragmentation failed to prevent GCC, suggesting independent pathways. Using super-resolution (STED) microscopy we found that the axonal actin/spectrin membrane-associated periodic skeleton (MPS) abundance and organization drop shortly after deprivation, remaining low until fragmentation. Fragmented axons lack MPS (while maintaining microtubules) and acute pharmacological treatments that stabilize actin filaments prevent MPS loss and protect from axonal fragmentation, suggesting that MPS destruction is required for axon fragmentation to proceed.Fil: Unsain, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Bordenave, Martín Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Martinez, Gaby F.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Jalil, Sami. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Von Bilderling, Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Barabas, Federico Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Masullo, Luciano Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Johnstone, Aaron D.. McGill University; CanadáFil: Barker, Philip A.. University of British Columbia; CanadáFil: Bisbal, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Stefani, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Caceres, Alfredo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentina. Instituto Universitario de Ciencias Biomédicas de Córdoba; Argentin
Multiproject–multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy
Contains fulltext :
75361.pdf (publisher's version ) (Open Access)14 p
Quantitative In Vivo Magnetic Resonance Spectroscopy Using Synthetic Signal Injection
Accurate conversion of magnetic resonance spectra to quantitative units of concentration generally requires compensation for differences in coil loading conditions, the gains of the various receiver amplifiers, and rescaling that occurs during post-processing manipulations. This can be efficiently achieved by injecting a precalibrated, artificial reference signal, or pseudo-signal into the data. We have previously demonstrated, using in vitro measurements, that robust pseudo-signal injection can be accomplished using a second coil, called the injector coil, properly designed and oriented so that it couples inductively with the receive coil used to acquire the data. In this work, we acquired nonlocalized phosphorous magnetic resonance spectroscopy measurements from resting human tibialis anterior muscles and used pseudo-signal injection to calculate the Pi, PCr, and ATP concentrations. We compared these results to parallel estimates of concentrations obtained using the more established phantom replacement method. Our results demonstrate that pseudo-signal injection using inductive coupling provides a robust calibration factor that is immune to coil loading conditions and suitable for use in human measurements. Having benefits in terms of ease of use and quantitative accuracy, this method is feasible for clinical use. The protocol we describe could be readily translated for use in patients with mitochondrial disease, where sensitive assessment of metabolite content could improve diagnosis and treatment
Choice of the initial antiretroviral treatment for HIV-positive individuals in the era of integrase inhibitors
BACKGROUND: We aimed to describe the most frequently prescribed initial antiretroviral therapy (ART) regimens in recent years in HIV-positive persons in the Cohort of the Spanish HIV/AIDS Research Network (CoRIS) and to investigate factors associated with the choice of each regimen. METHODS: We analyzed initial ART regimens prescribed in adults participating in CoRIS from 2014 to 2017. Only regimens prescribed in >5% of patients were considered. We used multivariable multinomial regression to estimate Relative Risk Ratios (RRRs) for the association between sociodemographic and clinical characteristics and the choice of the initial regimen. RESULTS: Among 2874 participants, abacavir(ABC)/lamivudine(3TC)/dolutegavir(DTG) was the most frequently prescribed regimen (32.1%), followed by tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC)/elvitegravir(EVG)/cobicistat(COBI) (14.9%), TDF/FTC/rilpivirine (RPV) (14.0%), tenofovir alafenamide (TAF)/FTC/EVG/COBI (13.7%), TDF/FTC+DTG (10.0%), TDF/FTC+darunavir/ritonavir or darunavir/cobicistat (bDRV) (9.8%) and TDF/FTC+raltegravir (RAL) (5.6%). Compared with ABC/3TC/DTG, starting TDF/FTC/RPV was less likely in patients with CD4100.000 copies/mL. TDF/FTC+DTG was more frequent in those with CD4100.000 copies/mL. TDF/FTC+RAL and TDF/FTC+bDRV were also more frequent among patients with CD4<200 cells//muL and with transmission categories other than men who have sex with men. Compared with ABC/3TC/DTG, the prescription of other initial ART regimens decreased from 2014-2015 to 2016-2017 with the exception of TDF/FTC+DTG. Differences in the choice of the initial ART regimen were observed by hospitals' location. CONCLUSIONS: The choice of initial ART regimens is consistent with Spanish guidelines' recommendations, but is also clearly influenced by physician's perception based on patient's clinical and sociodemographic variables and by the prescribing hospital location
Metabolite profiling in retinoblastoma identifies novel clinicopathological subgroups
BACKGROUND: Tumour classification, based on histopathology or molecular pathology, is of value to predict tumour behaviour and to select appropriate treatment. In retinoblastoma, pathology information is not available at diagnosis and only exists for enucleated tumours. Alternative methods of tumour classification, using noninvasive techniques such as magnetic resonance spectroscopy, are urgently required to guide treatment decisions at the time of diagnosis. METHODS: High-resolution magic-angle spinning magnetic resonance spectroscopy (HR-MAS MRS) was undertaken on enucleated retinoblastomas. Principal component analysis and cluster analysis of the HR-MAS MRS data was used to identify tumour subgroups. Individual metabolite concentrations were determined and were correlated with histopathological risk factors for each group. RESULTS: Multivariate analysis identified three metabolic subgroups of retinoblastoma, with the most discriminatory metabolites being taurine, hypotaurine, total-choline and creatine. Metabolite concentrations correlated with specific histopathological features: taurine was correlated with differentiation, total-choline and phosphocholine with retrolaminar optic nerve invasion, and total lipids with necrosis. CONCLUSIONS: We have demonstrated that a metabolite-based classification of retinoblastoma can be obtained using ex vivo magnetic resonance spectroscopy, and that the subgroups identified correlate with histopathological features. This result justifies future studies to validate the clinical relevance of these subgroups and highlights the potential of in vivo MRS as a noninvasive diagnostic tool for retinoblastoma patient stratification
Spatiotemporal Characteristics of the Largest HIV-1 CRF02_AG Outbreak in Spain: Evidence for Onward Transmissions
Background and Aim: The circulating recombinant form 02_AG (CRF02_AG) is the predominant clade among the human immunodeficiency virus type-1 (HIV-1) non-Bs with a prevalence of 5.97% (95% Confidence Interval-CI: 5.41–6.57%) across Spain. Our aim was to estimate the levels of regional clustering for CRF02_AG and the spatiotemporal characteristics of the largest CRF02_AG subepidemic in Spain.Methods: We studied 396 CRF02_AG sequences obtained from HIV-1 diagnosed patients during 2000–2014 from 10 autonomous communities of Spain. Phylogenetic analysis was performed on the 391 CRF02_AG sequences along with all globally sampled CRF02_AG sequences (N = 3,302) as references. Phylodynamic and phylogeographic analysis was performed to the largest CRF02_AG monophyletic cluster by a Bayesian method in BEAST v1.8.0 and by reconstructing ancestral states using the criterion of parsimony in Mesquite v3.4, respectively.Results: The HIV-1 CRF02_AG prevalence differed across Spanish autonomous communities we sampled from (p < 0.001). Phylogenetic analysis revealed that 52.7% of the CRF02_AG sequences formed 56 monophyletic clusters, with a range of 2–79 sequences. The CRF02_AG regional dispersal differed across Spain (p = 0.003), as suggested by monophyletic clustering. For the largest monophyletic cluster (subepidemic) (N = 79), 49.4% of the clustered sequences originated from Madrid, while most sequences (51.9%) had been obtained from men having sex with men (MSM). Molecular clock analysis suggested that the origin (tMRCA) of the CRF02_AG subepidemic was in 2002 (median estimate; 95% Highest Posterior Density-HPD interval: 1999–2004). Additionally, we found significant clustering within the CRF02_AG subepidemic according to the ethnic origin.Conclusion: CRF02_AG has been introduced as a result of multiple introductions in Spain, following regional dispersal in several cases. We showed that CRF02_AG transmissions were mostly due to regional dispersal in Spain. The hot-spot for the largest CRF02_AG regional subepidemic in Spain was in Madrid associated with MSM transmission risk group. The existence of subepidemics suggest that several spillovers occurred from Madrid to other areas. CRF02_AG sequences from Hispanics were clustered in a separate subclade suggesting no linkage between the local and Hispanic subepidemics
- …