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Discovering HIV related 
information by means 
of association rules and machine 
learning
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Ricardo Sanchez‑de‑Madariaga3,4 & The Cohort of the National AIDS Network (CoRIS)*

Acquired immunodeficiency syndrome (AIDS) is still one of the main health problems worldwide. It is 
therefore essential to keep making progress in improving the prognosis and quality of life of affected 
patients. One way to advance along this pathway is to uncover connections between other disorders 
associated with HIV/AIDS—so that they can be anticipated and possibly mitigated. We propose to 
achieve this by using Association Rules (ARs). They allow us to represent the dependencies between a 
number of diseases and other specific diseases. However, classical techniques systematically generate 
every AR meeting some minimal conditions on data frequency, hence generating a vast amount of 
uninteresting ARs, which need to be filtered out. The lack of manually annotated ARs has favored 
unsupervised filtering, even though they produce limited results. In this paper, we propose a semi-
supervised system, able to identify relevant ARs among HIV-related diseases with a minimal amount 
of annotated training data. Our system has been able to extract a good number of relationships 
between HIV-related diseases that have been previously detected in the literature but are scattered 
and are often little known. Furthermore, a number of plausible new relationships have shown up 
which deserve further investigation by qualified medical experts.

According to information provided by World Health Organization (WHO), HIV/AIDS remains one of the 
world’s most serious public health problems, particularly in low and middle-income countries. The development 
of AIDS (acquired immunodeficiency syndrome) disease, in patients infected with HIV, causes a progressive 
deterioration of the immune system and decreases the person’s ability to fight many infections and other diseases 
as well. AIDS refers to the most advanced stages of HIV infection and is defined by the development of one or 
more opportunistic infections or related cancers among many other possibilities.

WHO has released a number of policy guidelines to assist countries in implementing programs to improve 
HIV prevention, treatment, care and support services for affected patients. Several initiatives are underway in 
each country along these lines. One of these initiatives in Spain has been the launching of the Spanish HIV/
AIDS Research Network whose main goal consists of improving the health and quality of those affected. This 
network has generated the HIV/AIDS Research Network Cohort (CoRIS), which makes available to researchers 
the data from its main database and associated satellite databases, linking biological samples. CoRIS is an open, 
prospective and multicenter cohort of adult subjects with confirmed HIV infection, launched in 2004. Patients 
over 13 years old, and naive to antirretroviral treatment (ART) at study entry, have been recruited in HIV care 
units of the Spanish Public Health System and all of them have signed an informed consent form.

HIV is associated with the development of a large number of other diseases. In some cases, these diseases 
can be more or less mild and transient. However, in other cases, they can be very serious and long-lasting. It is 
essential to know the possible relationships between this diversity of diseases associated with HIV, since increas-
ing the knowledge about them can be of great help in their diagnosis and prevention, thus improving the patients’ 
quality of life. Knowledge about the conditions that typically appear with these diseases, and in what form, will 
help in making decisions about their prevention and treatment.
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In this study, we have focused on applying machine learning (ML) techniques to extract information about the 
relationships between diseases associated with HIV. Specifically, we have turned to the extraction of association 
rules of high reliability and coverage to identify relevant relationships between HIV-related diseases.

Association rules (ARs)1 are a data mining method that aims to discover patterns of co-occurrence between 
items in a transactional database. Specifically, we consider a set of n items I = {i1, i2, . . . , in} and a set or data-
base of transactions on these items: I = {i1, i2, . . . , in} . Each transaction is represented by a subset of items 
( I = {i1, i2, . . . , id} ) that have occurred simultaneously.

ARs present the following form:

where X and Y are two disjoint sets of items. We focus on a particular type of rules whose consequent is a single 
element.

An example of an association rule, that we could find in a database in which the transactions are the number 
of diseases suffered by the same patient, could be the following:

Urinary tract infection, abdominal pain, diabetes ⇒ renal failure
ARs have been frequently applied to the medical domain for different purposes. Imamura et al.2 applied them 

to find clinical findings associated with diseases. They have also been used to analyze patterns of lifestyle risk 
behaviors including smoking, heavy drinking, physical inactivity3. There have also been proposals that applied 
ARs to find relationships between healthcare parameters and specific diseases4, such as antimicrobial resistance5, 
psoriasis6, COVID-197, or Hospital-Acquired Infections8, among others.

Several algorithms have been proposed to systematically generate all ARs that satisfy certain favorable condi-
tions. These conditions refer to parameters such as support (how frequent an itemset is in the transaction set) and 
confidence (the likeliness of occurrence of consequents in the set, given that the set already has the antecedents).

One of the algorithms that allow the generation of association rules from frequent itemsets is the Frequent-
Pattern Growth or FP-Growth algorithm9.

By applying this or similar algorithms, we can generate the whole set of rules that satisfy the specified mini-
mum support and minimum confidence thresholds. However, this process leads to a huge number of rules, many 
of which are uninteresting. Actually, discovering interesting or relevant rules is a difficult problem10–12 that needs 
to be tackled. For example, considering the following AR:

pollen allergy ⇒ renal failure
Since pollen allergy is a very common problem, it can appear in many rules as an antecedent or a consequent. 

Therefore, ARs, such as the one appearing above, may meet the required frequency threshold, and yet not provide 
relevant information.

A relevant rule is one that includes at least one relevant relationship between some disease of the antecedent 
and the one of the consequent. Relevant relationships are those validated by medical experts.

Filtering relevant or interesting rules is a difficult problem that is primarily tackled using unsupervised 
approaches that do not require expert-annotated training data. These methods attempt to find hidden patterns 
from raw unlabeled data. Among these unsupervised approaches are those based on associating to the AR a 
p-value (the likelihood that the association is spurious due to chance)13,14. Specifically, the p-value of an AR R 
is the probability of observing R, or one rule stricter than R, when the two sides of R are independent. If a rule 
found in the data has a low p-value, it is unlikely that the two sides are independent. Rules with high p-values 
do not provide information about the independence of the two sides of the rule and can be discarded, as they 
have most likely appeared by pure chance.

However, unsupervised methods have a limit to the accuracy they can achieve. These limitations can be 
addressed by using supervised methods that are capable of learning from specific relationship examples, taking 
into account aspects beyond frequencies.

Supervised methods require labeled data that are used to extract knowledge. These methods start by apply-
ing a training process with a labeled data set and try to infer a function that fits the training data appropriately. 
Then, when applied on new data, this function is able to predict the output. In the case of ARs, few supervised 
systems have been proposed due to the lack of labeled data.

One way to circumvent this problem is to use the semi-supervised15 approach, which employs both labeled 
and unlabeled data in the training process. This approach typically uses a small amount of labeled data and a 
larger amount of raw data. Techniques based on this approach can be adjusted to improve their performance as 
they have larger amounts of training data, for example in a feedback process.

Sánchez-de-Madariaga et al.16 proposed a new semi-supervised data mining model, EXTRAE, that combines 
unsupervised techniques (p-value computed as Fisher’s exact test) with highly limited supervision. The training 
process starts with a small seed of annotated data, and the model improves its results (F-measure) using a fully 
supervised system (standard supervised machine learning algorithms). The key idea of this proposal is to enlarge 
the size of the training data by checking the agreement between the predictions of the supervised system and 
those of the unsupervised techniques in a series of iterative steps. The remarkable feature of this system is its 
ability to improve the results of purely supervised methods by combining them with unsupervised techniques. 
This system has been evaluated on data from the medical domain. Specifically, it has been evaluated on a set of 
ARs generated from primary care data, which have been manually labeled as true or false (of no interest). The 
diseases considered were rather common as they came from primary care data and the association rules generated 
are of limited interest. However, the results obtained showed the potential of the method designed.

The main goal of this study is to find poorly understood relationships between HIV-associated diseases 
using association rules. To this end, we propose to apply and adapt the semi-supervised algorithm with minimal 
supervision16 mentioned above, to filter association rules between HIV-related diseases. To apply the algorithm 

X ⇒ Y
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and also to be able to perform a proper evaluation, we have started by generating a dataset of association rules 
and then manually labeling a part of them as relevant or not by expert doctors in HIV. The rules considered by the 
doctor come from applying the FP-Growth algorithm to the CoRIS cohort data. The input data to our algorithm 
are ARs annotated with a label indicating whether they are relevant or not.

Since, to the best of our knowledge, there is little history of annotation of ARs as relevant or not, this annota-
tion process has required the definition of a new annotation guideline, this being a contribution of the present 
study. Another important contribution is the associations found between diseases themselves. We also provide 
a highly accurate method for the classification of ARs as relevant or not, which has been evaluated on the previ-
ously created dataset.

In summary, the main contributions of the present study are outlined as follows:

•	 An analysis of the most appropriate conditions for assigning the relevance of the rules based on the relation-
ships between the diseases contained in them.

•	 A collection of association rules between HIV-associated diseases labeled as relevant or not by experts.
•	 Design of a semi-supervised system that requires only a very small amount of annotated data and is able to 

predict with high accuracy whether new ARs for HIV-associated diseases are relevant or not.
•	 An expert analysis of various relationships between HIV-related diseases revealed by the ARs found.

Figure 1 shows a scheme of the applied semi-supervised system EXTRAE. From the data on the diseases 
suffered by each patient in the CoRIS database, all the ARs that satisfy minimum conditions of co-occurrence 
frequency (support and confidence) are generated. A medical expert evaluates a small set of these rules, which 
serves as a seed for the algorithm, as being relevant or not. That initial seed serves as a training set for a super-
vised algorithm. It also allows for certain adjustments of an unsupervised algorithm. When the predictions on 
the ARs of both algorithms match, they are considered sufficiently reliable to be added as reference data to the 
training set. The process is repeated until convergence is reached when no new ARs are added to the training set.

Our analysis has uncovered multiple relationships of interest between HIV-related diseases. Some of these 
relationships are well known to medical experts. Others are little known and, even though they could be con-
firmed in the literature, they were scattered and hence their compilation may represent a breakthrough in HIV 
research. Finally, other relationships, although plausible, are neither confirmed nor discarded in the literature 
and deserve to be studied in depth by medical professionals.

Methods
In this section, we include details of the reference collection on HIV-related diseases. We also introduce the pro-
cess followed to analyze and annotate the association rules to be used to train and evaluate the semi-supervised 
model. Finally, we present the semi-supervised model EXTRAE applied for ARs filtering.

CORIS data.  The Spanish HIV/AIDS research network (CoRIS) is an open, prospective, multicenter cohort 
of adult subjects with confirmed HIV infection, naïve to ART at study entry, recruited in 47 centers from 14 of 
17 Autonomous Regions in Spain, from 2004 onwards. Data are organized and standardized following the HIV 
Cohorts Data Exchange Protocol (HICDEP) for data collection (details at https://​hicdep.​org/) and adhere to 

Figure 1.   Scheme of EXTRAE, the semi-supervised learning model for the filtering of relevant ARs among 
HIV-related diseases.

https://hicdep.org/
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internal strict annual quality controls. The CoRIS database collects baseline and follow-up socio-demographic, 
immunological and clinical data. Patients are followed periodically according to routine clinical practice. The 
CoRIS cohort has been described in detail elsewhere17.

Each CoRIS participant provided his or her written informed consent prior to enrolling in this study. The 
CoRIS cohort was approved by the Research Ethic Committee of the Gregorio Marañón Hospital. All methods 
were carried out in accordance with relevant guidelines and regulations.

The HIV/AIDS Research Network Cohort was established in 2004 in conjunction with the HIV Biobank. 
These platforms are fundamental resources for improving knowledge about HIV. The coordination team is a 
multidisciplinary group: epidemiologists, statisticians, clinicians, pharmacists, microbiologist among others. 
The aim of CoRIS is to collect information on HIV-positive patients in order to study the epidemiological 
characteristics, the progression of the infection and its determinants, as well as the response to treatment and its 
influencing factors. CoRIS is organized around three structures:

•	 Coordination center: it organizes and coordinates data collection, supporting hospitals in these procedures 
and carries out data processing for statistical analysis.

•	 Clinical centers: hospitals and health centers where information and biological samples are collected.
•	 CoRIS Scientific Committee: it decides on the scientific development of the cohort. It also evaluates requests 

from research groups that need to use CoRIS data in their projects.
•	 Biobank: blood samples are collected (at baseline visit and annually thereafter) from all patients who give 

specific informed consent, from which aliquots of serum and cells are separated and stored in a centralized 
biobank.

For all patients enrolled in the cohort, updates of clinical data and biological parameters were requested at a 
periodicity of 6 ± 2 months. Follow-up was terminated upon death, change of follow-up center to one outside 
the cohort, or failure of the patient to appear for scheduled visits.

A database including all baseline and follow-up variables was created with the patient data and made available 
to all centers. After receiving the data, the coordinating center transfers them to a series of files with a common 
structure for all the centers. In order to connect all the information referring to the same patient and avoid 
duplication, a unique code combining the patient’s initials, date of birth and sex is used. The files are updated 
with the data sent by the hospitals every 12 months, both for new patients and for the follow-up of patients 
already included.

To guarantee the validity of the information and homogeneity between centers, several quality controls are 
carried out. All the information received at the data coordination center is subjected to a program that auto-
matically detects inconsistencies, out-of-range data and duplicates. The cohort protocol was approved by the 
ethics committee of each participating hospital. When a patient is recruited, informed consent is requested. All 
information sent from the hospitals is anonymous.

In addition to clinical and epidemiological information, blood samples are collected from all patients who 
give specific informed consent, from which samples of serum and cells are separated and stored in a centralized 
BioBank for the entire cohort.

Manual evaluation of association rules.  The development of ML systems requires training data that 
allows the system to find the appropriate model and configuration to make predictions about new data. In our 
case, the objective is to have a ML system capable of discriminating whether an AR is relevant or not. For sake of 
simplicity, sometimes we will call them true (relevant) or false (otherwise). We therefore need a collection of ARs 
classified as true or false, which will allow us to perform the training. The first problem we faced was to establish 
the criteria for deciding whether an AR is relevant or not. After making a thorough study of the collection of 
initial rules extracted by the FP-Growth algorithm, we established the following set of criteria:

An AR R (X ⇒ Y, X = ( x1, · · · , xn )) is relevant (True) if

that is, if there is any non-trivial relationship between any of the antecedent and consequent diseases.
During the annotation process the following considerations have been taken into account:

•	 The association with the consequent can be either directly causal or inversely causal
	   (xi → Y  and Y → xi are considered equivalent):
	   For example:
	   acute myocardial infarction → high blood pressure: true
	   but also:
	   high blood pressure → acute myocardial infarction: true
	   We assume that often the cause-effect relationship is not clearly established, so we simply consider the 

relationship between the two elements, without establishing which is the cause and which is the effect.
•	 If there are several antecedents and some of them are related to the consequent, even if they are not related 

to each other, the rule is considered true, that is
	   for the AR R: X ⇒ Y, X = ( x1, . . . , xn)), relation(xi , xj ) are not taken into account.
	   For example:
	   Arterial hypertension, Diabetes mellitus Dislipidemia → Acute myocardial infarction

∃i, i ∈ {1, n}, such that relation(xi ,Y)is not trivial.
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•	 If the association with the consequent is that it includes the antecedent or is a part of the antecedent (in a 
non-trivial way), the AR is true, that is

	   if for the AR R: X ⇒ Y, X = ( x1, . . . , xn )) and ∃i, such that i ∈ {1, n}, such that xi is a disease that genalizes 
Y or vice versa, then the AR R is considered relevant:

	   lung neoplasm → Non-AIDS neoplasm

In the first phase of this study, we considered that, if any of the elements included in the antecedent did not have 
an established relationship with the consequent, the rule was false. However, this led to eliminate many interest-
ing rules in which an item could be included by chance, but which established a relevant relationship among 
the rest of the items. Therefore, we chose to classify as true those rules in which there were potentially relevant 
relations, even if they included some irrelevant items.

Once the general annotation guidelines were established, a HIV expert clinician (Dr. Otilia Bisbal) exam-
ined the rules, by gathering information to establish relationships between elements of the antecedent and the 
consequent based on their own experience in many cases, and also based on scientific literature in cases of less 
common relationships. Table 1 shows some data about the manually annotated ARs collection, Association 
Rules HIV/AIDS Dataset (ARAIDS). It is composed of 1000 rules of which, according to the adopted annotation 
criteria, 613 are relevant. The longest AR includes 4 antecedents and one consequent. The ARs in the collection 
involve 141 different health disorders, of which the one that occurs most frequently is Non-defining neoplasm 
AIDS, appearing 387 times.

Semisupervised method for filtering HIV/AIDS associated rules.  This section presents the 
EXTRAE algorithm16, a semi-supervised algorithm which requires an extremely small amount of data to be 
trained. This system is made up of two modules or components: one that implements an unsupervised method 
and another that implements a supervised one.

The set of ARs are extracted from CoRIS data by means of the FP-Growth algorithm. This algorithm gener-
ates all the possible ARs with certain constraints related to the support and confidence conditions and to the 
form of the rules.

The support of an AR X ⇒ Y  is the fraction of transactions that include the set of items in the antecedent 
or consequent of the rule:

where N is the number of transactions in the database, and count ( X ∪ Y  ) the number of transactions containing 
all items in X (antecedent) or Y (consequent).

On the other hand, the confidence of a rule is defined as the fraction of transactions in which itemsets X 
and Y appear:

It can be interpreted as how often a transaction that contains the itemset X also contains itemset Y.
The parameters used for this algorithm are: Min. Support of 0.0001; Min. confidence of 0.6; Max. antecedent 

length unlimited; Max. consequent length of 1.

Unsupervised component of EXTRAE algorithm.  This component applies Fisher’s exact test to obtain the 
p-value corresponding to the ARs. Specifically, the p-value is used to rank a set of ARs. We rank them in ascend-
ing order and establish a threshold. Then, the n rules above that threshold (lower value) are considered as true, 
and the rules below that threshold (higher value) as false.

In order to compute the p-value, the data set is split into two halves called exploratory (50%) and holdout 
(50%). Then, the FP-Growth algorithm is applied to extract the ARs in both sets.

support(X ⇒ Y) = support(X ∪ Y) =
count(X ∪ Y)

N

conf (X ⇒ Y) =
support(X ∪ Y)

support(X)

Table 1.   Some data on the Association Rules HIV/AIDS Dataset (ARAIDS), the manually validated collection 
of ARs.

Data Description

Number of ARs 1000

ARs of interest 613

ARs without interest 387

Shortest AR 1 antecedent and 1 consequent

Longest AR 4 antecedents and 1 consequent

N. of health disorder involved 141

Most freq. health disorders in ARs Non-defining neoplasm AIDS (387 times)



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18208  | https://doi.org/10.1038/s41598-022-22695-y

www.nature.com/scientificreports/

These two sets of rules allow us to apply the Fisher test to obtain the p-values for the rules in the holdout set. 
This is done by building, for each rule R: A −→ B in the holdout set, a contingency table with the following data 
for the rule collected in the exploratory dataset: 

Rules with B ( n2) Rules without B ( N − n2)

Rules with A ( n1) Rules with A and B (k) Rules with A (without B) ( n1 − k)

Rules without A ( N − n1) Rules with B (without A) ( n2 − k) Rules without A and B ( N − n1 − n2 + k

)

The p-value is computed as the hypergeometric distribution of the numbers contained in the cells of the table:

where N is the number of rules in the exploratory set, K is the number of rules in this set containing A and B, n1 
is the number of rules containing A, n2 is the number of rules containing B.

The value of the threshold is key to the performance of this unsupervised algorithm. Other studies using 
Fisher’s test for filtering the relevant ARs14 set the threshold following some heuristic such as taking the value 
which provides a certain number of relevant rules. However, in our case, it can be set with high accuracy using 
the data from the training set. The threshold is chosen so that the number of hits in the set of ARs of the train-
ing set is maximized. In this way, the unsupervised component becomes supervised to a certain degree. This is 
a great improvement for this method, which is later used to improve the results of the supervised component, 
resulting in a semi-supervised system that improves its two components.

Supervised component of EXTRAE algorithm.  Thanks to the availability of manually annotated ARs, we can 
make use of classical ML systems to build a classifier that indicates whether a new rule is relevant. Specifically, 
we applied a Random Forest (default parameters provided by WEKA v3.8.2) with the following two groups of 
features:

•	 The first set of features have been extracted from the content of the association rules and the output of the 
FP-Growth algorithm:

–	 Support.
–	 Confidence.
–	 Lift. The lift value is the quotient of the posterior and prior confidence of an association rule. That is, if 

“ ∅ → flu” has a confidence of 60% and “cough → flu” has a confidence of 72%, then the lift value (of the 
second rule) is 72/60 = 1.2.

–	 Number of antecedents. The number of antecedents of an AR “A and B → C” is the number of elements 
of the set S ={ A, B }.

–	 Number of consequents. The number of consequents of an AR “A and B → C” is the number of elements 
of the set S ={ C }.

•	 The second group of features attempts to capture medical information on diseases:

–	 CDC. The Centers for Disease Control and Prevention (CDC) is the national public health agency of the 
United States and provides a list of diseases and conditions. This feature provides the normalised value 
of the association rule items that belong to this list.

–	 DIS. In this feature, the items of the association rule that are diseases but do not appear in the CDC list 
are detected and the normalised value is provided.

–	 ADD. The CoRIS dataset provides 34 adverse event types. These adverse events are a very serious type of 
disease like heart attck, lymphoma, cancer, etc.). This rule provides the normalised value of the presence 
of this type of adverse disease among the items of the association rule.

–	 COD. The CoRIS dataset provides 123 types of cause of death. This feature identifies whether any item 
in the association rule belongs to this list and uniquely identifies it.

–	 CIE. For each item of the association rule we have identified its ICD10 code. Due to the large number of 
possible labels of the complete code (more than 71K) we have only used the first character corresponding 
to the ”chapter”. Therefore we have created 24 features in which each rule indicates the number of items 
belonging to that ICD10 chapter.

Semi‑supervised EXTRAE algorithm.  The semi-supervised combination of the components described above 
results in the semi-supervised EXTRAE system capable of classifying relevant ARs with high accuracy while 
requiring a minimal amount of training data. This system starts from a small seed dataset S of annotated rules. 
According to previous studies16, this initial seed can be set to around 10 rules. This seed set is used to train the 
supervised component leading to a ML model. This ML model is then used to predict the class (i.e. relevant or 
not) for each AR in the rest of the training set. The last computed seed dataset is also used to compute an accu-
rate p-value threshold for the unsupervised component. After sorting S according to their p-value, we choose 

(1)p(R) =

(

n1
k

)(

N − n1
n2 − k

)

(

N
n2

)
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as threshold the p-value that maximizes the hits for the seed set. Next, the unsupervised component is applied 
to the development set to filter the relevant ARs. Afterwards, the results of both components, supervised and 
unsupervised, are applied to the development dataset for enlarging the seed set. Specifically, the ARs for which 
the predictions of both components match, i.e. both are true or both are false (coincident set of ARs), are added 
to the seed set and removed from the development set. The new seed set is used to train the supervised mod-
ule again, as well as to adjust the threshold of the unsupervised component. This process is repeated until the 
coincident set of ARs is empty (i.e. the seed set cannot grow anymore). Figure 2 shows a scheme of the system.

Results
In this section we present the experimental results obtained by the system on the ARAIDS dataset along with 
a parameter analysis.

For the evaluation of our system we have used a set of standard evaluation measures which focus on different 
aspects of the results. F-measure is a combination of the system precision and recall. AUC ROC estimates the area 
under the ROC curve for machine learning model comparison, where the ROC curve is a graph representing 
the performance of the system as its discrimination threshold for binary classification varies. We also use the 
PR Curve (PRC), the result of drawing the graph between the precision and the recall. This graph shows from 
which recall we have a degradation of the precision and vice versa. The area under this curve (AU-PRC) provides 
a value to compare different systems.

We have carried out a fivefold cross-validation for evaluation. Since EXTRAE is a semi-supervised system, 
only a portion of the training rules are used for training (seed subset), depending on the different configura-
tions analyzed.

Table 2 shows the results of the semi-supervised method based on Incremental Learning (EXTRAE Algo-
rithm). In order to evaluate the results, the three evaluation measures that state-of-the-art systems typically 
employ (F-measure, AUR-ROC, and AU-PRC) are provided. As for other values shown in the table, seed size is 
the original size of the training set from which the set is automatically increased. Iterations show the number of 
times that new rules need to be added to the seed set, in order that a set is reached to which no new rule can be 
added. The p-value is calculated from the seed set. Results show the performance of the system after n iterations. 
From the results shown in this Table, the best seed size is 35. A p-value threshold of 1.12E−13 is calculated on 
this seed size and after 8 iterations an f-measure of 0.84 is obtained.

Table 3 shows the partial results of the EXTRAE Algorithm in each iteration for the best configuration shown 
in Table 2. These results correspond to one of the 5 partitions used as part of the fivefold cross validation method. 
In the first iteration, 478 new rules are added and an F-measure of 0.72 is obtained. From the fifth iteration, the 
number of matching rules is greatly reduced and, in this way, the performance increases slowly until it reaches an 
F-measure of 0.84. In only eight iterations it increases its performance by 75%, which proves the high quality of 
the added rules. If we look at the AUC-ROC and AU-PRC, the final results are even higher than the F-measure. 
This shows that the system performance is robust when using different evaluation criteria.

Table 4 shows the results of the EXTRAE system compared to the two supervised and unsupervised systems 
of which EXTRAE is composed. For the supervised system, results are provided when using the same number 

Figure 2.   Flow diagram of incremental learning in EXTRAE semi-supervised algorithm for filtering relevant 
ARs. Rounded rectangles show the beginning and the end of the iterations, rectangles are the rule sets, ovals are 
processes, and the diamond represents a condition.
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of seeds (35) as used by EXTRAE, and also for the maximum number of association rules (80%) of the training 
set. Note that the test set is 20% of the dataset. Finally, the results of the unsupervised system are shown taking 
into account the best performing p-value. The unsupervised system performs significantly worse than EXTRAE, 
which shows the complexity of the problem. In the case of the supervised system trained with 35 rules, it was 
clear that the amount of training data was too low for a supervised system, but we wanted to reflect the power 
of EXTRAE when using the same number of rules.

Finally, EXTRAE obtains better results than the supervised system trained with 800 rules by a slight differ-
ence. This comparison is most interesting because, despite initially training with a seed of 35 rules, EXTRAE 
manages to select the most discriminating rules from the training set to end up with a higher quality rule set 
than the supervised system and, thus, improve its performance.

Table 2.   Results of EXTRAE algorithm on ARAIDS dataset using different seed sizes, based on their 
F-measure, AUC-ROC, and AU-PRC. Iterations is the max. number of iterations reached and p-value is 
obtained automatically using the filter approach on the seed set. Best results appear in boldface.

ARAIDS dataset

Seed size Iterations p-value F-measure AUC-ROC AU-PRC

10 5 1.03E−12 0.62 0.69 0.70

15 4 1.03E−12 0.68 0.71 0.71

20 7 1.03E−12 0.72 0.77 0.77

25 5 1.12E−13 0.79 0.84 0.83

35 8 1.12E−13 0.84 0.88 0.88

50 9 1.12E−13 0.81 0.85 0.85

75 4 1.25E−13 0.80 0.84 0.83

100 6 1.25E−13 0.75 0.79 0.80

125 7 1.25E−13 0.76 0.81 0.81

150 5 1.25E−13 0.71 0.74 0.74

Table 3.   Evolution of learning from a seed set with 35 rules from one of the 5 partitions used as part of the 
fivefold cross validation, based on their F-Measure, AUC-ROC, and AU-PRC. Coincident rules are those from 
the development set that have the same prediction and label based on the p-value filter. Best results appear in 
boldface.

Iteration Coincident rules F-measure AUC-ROC AU-PRC

0 – 0.48 0.53 0.54

1 478 0.72 0.79 0.78

2 156 0.79 0.83 0.84

3 41 0.81 0.84 0.84

4 18 0.81 0.85 0.85

5 9 0.82 0.85 0.85

6 6 0.82 0.86 0.86

7 5 0.83 0.87 0.88

8 2 0.84 0.88 0.88

Table 4.   Results of the best pereformance for the EXTRAE algorithm, and both supervised and unsupervised 
systems on ARAIDS dataset using the best configuration of EXTRAE, based on their F-measure, AUC-ROC, 
and AU-PRC. Iterations is the max. number of iterations reached and p-value is obtained automatically using 
the filter approach on the seed set for EXTRAE. Best results appear in boldface.

ARAIDS dataset

System Seed/training size Iterations p-value F-measure AUC-ROC AU-PRC

EXTRAE 35 rules 8 1.12E−13 0.84 0.88 0.88

Supervised 35 rules – – 0.52 0.56 0.55

Supervised 800 rules – – 0.81 0.86 0.85

Unsupervised – – 5.32E−14 0.68 – –
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Discussion
In this study, we have proven that it is possible to perform filtering of relevant ARs with high accuracy, using a 
semi-supervised system capable of operating on an extremely small amount of training data. Specifically, in this 
case, the optimal results have been reached with only 35 annotated ARs. The results for the data considered here 
are even better than those obtained by the EXTRAE algorithm applied to other data in a previous study16. In the 
latter, the semi-supervised algorithm applied to primary care data obtained an F-measure of 0.75, AUC-ROC 
of 0.80 and AU-PRC of 0.81 respectively.

We have demonstrated that it is advantageous to perform association rule filtering with a semi-supervised 
system, and that the results of such a system are able to outperform both unsupervised and supervised systems 
when using a reduced amount of training data.

Association rules are a fairly simple artifact in their form, unlike, for example, texts. Therefore, a small num-
ber of parameters is enough to characterize their form, as well as aspects related to the frequency of the diseases 
involved and their combinations (captured by the features of support and confidence).

The medical aspects of the system are to a great extent captured by the unsupervised part. In this part, the 
system includes the most statistically significant ARs according to the diseases that make up each rule. The 
combination of both parts and their joint evolution leads the system to select the most relevant ARs.

The prediction of relevant ARs provided by the proposed model and its validation by a HIV medical expert 
has provided an interesting collection of HIV-related disease relationships. We describe below a number of 
relationships that have appeared during the validation process.

The relationship of depression with cardiovascular disease, diabetes and cancer is described in the literature 
and is probably due to immune factors, toxic habits, drugs, etc. and has, therefore, been considered to be true. 
Similarly, the relationship between psychosis with cardiovascular risk and diabetes has also been described for 
the same reasons and has also been considered to be true18–21.

The relationship between acute myocardial infarction (AMI) and dementia (especially when it is of vascular 
origin) has also been described in the literature, so it has been considered true22,23.

Likewise, the relationship between diabetes and dementia is also reported in the literature, so it has been 
considered true24.

A doubtful case is the relationship between fracture and neoplasm: in extended neoplasms when bone metas-
tases occur there may be pathological fractures, but this is not frequent, and it is not the type of fracture referred 
to in the CoRIS database, so it has been considered false.

The relationship between Kaposi’s sarcoma and bronchial neoplasm has been considered true since Kaposi’s 
sarcoma is a neoplasm that can affect the lung.

The relationship between cachectic syndrome (cachectic sd) and neoplasms has been considered false, because 
even though the latter can produce a cachectic sd, in the CoRIS database it is specified that it refers to the former 
due to HIV or wasting syndrome in particular.

Regarding the term “secondary malignant neoplasm of other specified sites”, if it appears in an AR whose 
consequent is lung or bladder cancer or head and neck cancer, the AR has been considered true because it can 
be a metastasis of these neoplasms. However, it has been considered false if the consequent of AR is recurrent 
bacterial pneumonia, because although the latter increases the risk of lung neoplasm, it does not increase the 
risk of any neoplasm.

The relationship between lactic acidosis and diabetes and cancer has been described25 so it has been con-
sidered true.

Appendix A includes a series of relationships considered to be true since they have been confirmed in the 
literature, together with some references to them. The appendix also gathers relationships that have been con-
sidered false either because they lack consistent support in the literature or because they have been ruled out 
by the literature.

Data availability
The datasets supporting the conclusions of this article are included within the article and its tables, as well as in 
the supplementary material. The original HIV data from the CoRIS Cohort can be requested to this organization 
under the corresponding agreement.
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