32 research outputs found

    Behavioral characterization of a mouse model overexpressing DSCR1/ RCAN1

    Get PDF
    DSCR1/ RCAN1 is a chromosome 21 gene found to be overexpressed in the brains of Down syndrome (DS) and postulated as a good candidate to contribute to mental disability. However, even though Rcan1 knockout mice have pronounced spatial learning and memory deficits, the possible deleterious effects of its overexpression in DS are not well understood. We have generated a transgenic mouse model overexpressing DSCR1/RCAN1 in the brain and analyzed the effect of RCAN1 overexpression on cognitive function. TgRCAN1 mice present a marked disruption of the learning process in a visuo-spatial learning task. However, no significant differences were observed in the performance of the memory phase of the test (removal session) nor in a step-down passive avoidance task, thus suggesting that once learning has been established, the animals are able to consolidate the information in the longer term

    Building the Future Therapies for Down Syndrome: The Third International Conference of the T21 Research Society

    Get PDF
    Research focused on Down syndrome has increased in the last several years to advance understanding of the consequences of trisomy 21 (T21) on molecular and cellular processes and, ultimately, on individuals with Down syndrome. The Trisomy 21 Research Society (T21RS) is the premier scientific organization for researchers and clinicians studying Down syndrome. The Third International Conference of T21RS, held June 6–9, 2019, in Barcelona, Spain, brought together 429 scientists, families, and industry representatives to share the latest discoveries on underlying cellular and molecular mechanisms of T21, define cognitive and behavioral challenges and better understand comorbidities associated with Down syndrome, including Alzheimer’s disease and leukemia. Presentation of cutting-edge results in neuroscience, neurology, model systems, psychology, cancer, biomarkers and molecular and phar­ma­cological therapeutic approaches demonstrate the compelling interest and continuing advancement in all aspects of understanding and ameliorating conditions associated with T21

    Evaluation of Nutritional Practices in the Critical Care Patient (The ENPIC Study): Does Nutrition Really Affect ICU Mortality?

    Get PDF
    Background & aims: The importance of artificial nutritional therapy is underrecognized, typically being considered an adjunctive rather than a primary therapy. We aimed to evaluate the influence of nutritional therapy on mortality in critically ill patients. Methods: This multicenter prospective observational study included adult patients needing artificial nutritional therapy for >48 h if they stayed in one of 38 participating intensive care units for >= 72 h between April and July 2018. Demographic data, comorbidities, diagnoses, nutritional status and therapy (type and details for <= 14 days), and outcomes were registered in a database. Confounders such as disease severity, patient type (e.g., medical, surgical or trauma), and type and duration of nutritional therapy were also included in a multivariate analysis, and hazard ratios (HRs) and 95% confidence intervals (95% CIs) were reported. Results: We included 639 patients among whom 448 (70.1%) and 191 (29.9%) received enteral and parenteral nutrition, respectively. Mortality was 25.6%, with non-survivors having the following char-acteristics: older age; more comorbidities; higher Sequential Organ Failure Assessment (SOFA) scores (6.6 +/- 3.3 vs 8.4 +/- 3.7; P < 0.001); greater nutritional risk (Nutrition Risk in the Critically Ill [NUTRIC] score: 3.8 +/- 2.1 vs 5.2 +/- 1.7; P < 0.001); more vasopressor requirements (70.4% vs 83.5%; P=0.001); and more renal replacement therapy (12.2% vs 23.2%; P=0.001). Multivariate analysis showed that older age (HR: 1.023; 95% CI: 1.008-1.038; P=0.003), higher SOFA score (HR: 1.096; 95% CI: 1.036-1.160; P=0.001), higher NUTRIC score (HR: 1.136; 95% CI: 1.025-1.259; P=0.015), requiring parenteral nutrition after starting enteral nutrition (HR: 2.368; 95% CI: 1.168-4.798; P=0.017), and a higher mean Kcal/Kg/day intake (HR: 1.057; 95% CI: 1.015-1.101; P=0.008) were associated with mortality. By contrast, a higher mean protein intake protected against mortality (HR: 0.507; 95% CI: 0.263-0.977; P=0.042). Conclusions: Old age, higher organ failure scores, and greater nutritional risk appear to be associated with higher mortality. Patients who need parenteral nutrition after starting enteral nutrition may represent a high-risk subgroup for mortality due to illness severity and problems receiving appropriate nutritional therapy. Mean calorie and protein delivery also appeared to influence outcomes. (C) 2021 The Author(s). Published by Elsevier Ltd on behalf of European Society for Clinical Nutrition and Metabolism

    Structural analysis of pathogenic mutations in the DYRK1A gene in patients with developmental disorders.

    Get PDF
    Haploinsufficiency in DYRK1A is associated with a recognizable developmental syndrome, though the mechanism of action of pathogenic missense mutations is currently unclear. Here we present 19 de novo mutations in this gene, including five missense mutations, identified by the Deciphering Developmental Disorder study. Protein structural analysis reveals that the missense mutations are either close to the ATP or peptide binding-sites within the kinase domain, or are important for protein stability, suggesting they lead to a loss of the protein's function mechanism. Furthermore, there is some correlation between the magnitude of the change and the severity of the resultant phenotype. A comparison of the distribution of the pathogenic mutations along the length of DYRK1A with that of natural variants, as found in the ExAC database, confirms that mutations in the N-terminal end of the kinase domain are more disruptive of protein function. In particular, pathogenic mutations occur in significantly closer proximity to the ATP and the substrate peptide than the natural variants. Overall, we suggest that de novo dominant mutations in DYRK1A account for nearly 0.5% of severe developmental disorders due to substantially reduced kinase function

    Building the Future Therapies for Down Syndrome:The Third International Conference of the T21 Research Society

    Get PDF
    Research focused on Down syndrome has increased in the last several years to advance understanding of the consequences of trisomy 21 (T21) on molecular and cellular processes and, ultimately, on individuals with Down syndrome. The Trisomy 21 Research Society (T21RS) is the premier scientific organization for researchers and clinicians studying Down syndrome. The Third International Conference of T21RS, held June 6-9, 2019, in Barcelona, Spain, brought together 429 scientists, families, and industry representatives to share the latest discoveries on underlying cellular and molecular mechanisms of T21, define cognitive and behavioral challenges and better understand comorbidities associated with Down syndrome, including Alzheimer's disease and leukemia. Presentation of cutting-edge results in neuroscience, neurology, model systems, psychology, cancer, biomarkers and molecular and phar-ma-cological therapeutic approaches demonstrate the compelling interest and continuing advancement in all aspects of understanding and ameliorating conditions associated with T21

    Factors associated with the need of parenteral nutrition in critically ill patients after the initiation of enteral nutrition therapy

    Get PDF
    Background and aimsDespite enteral nutrition (EN) is the preferred route of nutrition in patients with critical illness, EN is not always able to provide optimal nutrient provision and parenteral nutrition (PN) is needed. This is strongly associated with gastrointestinal (GI) complications, a feature of gastrointestinal dysfunction and disease severity. The aim of the present study was to investigate factors associated with the need of PN after start of EN, together with the use and complications associated with EN.MethodsAdult patients admitted to 38 Spanish intensive care units (ICUs) between April and July 2018, who needed EN therapy were included in a prospective observational study. The characteristics of EN-treated patients and those who required PN after start EN were analyzed (i.e., clinical, laboratory and scores).ResultsOf a total of 443 patients, 43 (9.7%) received PN. One-third (29.3%) of patients presented GI complications, which were more frequent among those needing PN (26% vs. 60%, p = 0.001). No differences regarding mean energy and protein delivery were found between patients treated only with EN (n = 400) and those needing supplementary or total PN (n = 43). Abnormalities in lipid profile, blood proteins, and inflammatory markers, such as C-Reactive Protein, were shown in those patients needing PN. Sequential Organ Failure Assessment (SOFA) on ICU admission (Hazard ratio [HR]:1.161, 95% confidence interval [CI]:1.053–1.281, p = 0.003) and modified Nutrition Risk in Critically Ill (mNUTRIC) score (HR:1.311, 95% CI:1.098–1.565, p = 0.003) were higher among those who needed PN. In the multivariate analysis, higher SOFA score (HR:1.221, 95% CI:1.057–1.410, p = 0.007) and higher triglyceride levels on ICU admission (HR:1.004, 95% CI:1.001–1.007, p = 0.003) were associated with an increased risk for the need of PN, whereas higher albumin levels on ICU admission (HR:0.424, 95% CI:0.210–0.687, p = 0.016) was associated with lower need of PN.ConclusionA higher SOFA and nutrition-related laboratory parameters on ICU admission may be associated with the need of PN after starting EN therapy. This may be related with a higher occurrence of GI complications, a feature of GI dysfunction.Clinical trial registrationClinicalTrials.gov: NCT03634943

    Rifampicin/isoniazid/pyrazinamide/ethambutol

    No full text

    Ethanol-Induced Changes in Brain of Transgenic Mice Overexpressing DYRK1A

    No full text
    International audienceAlcoholism is a chronic relapsing disorder defined by loss of control over excessive consumption of ethanol despite damaging effects on the liver and brain. We previously showed that the overexpression in mice of Dyrk1A (TgDyrk1A, for dual-specificity tyrosine (Y) phosphorylation-regulated kinase 1A) reduces the severity of alcohol mediated liver injury. Ethanol consumption has also been associated with increased brain glutamate concentration that led to therapies targeting glutamatergic receptors and normalization of glutamatergic neurotransmission. Interestingly, mice overexpressing Dyrk1A (TgDyrk1A mice) present a reduction of glutamatergic brain transmission, which we propose could be protective against alcohol intake. To answer this question, we investigated the ethanol preference in TgDyrk1A mice using a two-bottle choice paradigm. TgDyrk1A mice showed a non-significant decrease of voluntary ethanol intake and ethanol preference compared with wild-type mice. At the peripheral level, mice overexpressing Dyrk1A show lower ethanol plasma levels, indicating a faster ethanol metabolism. At the end of the protocol, lasting 21 days, brains were extracted for protein analysis. Ethanol reduced levels of the synaptic protein PSD-95 and increased the glutamate decarboxylase GAD65, specifically in the cortex of TgDyrk1A mice. Our results suggest that overexpression of DYRK1A may cause different ethanol-induced changes in the brain
    corecore