34 research outputs found

    Quantitative Raman spectroelectrochemistry using silver screen-printed electrodes

    Get PDF
    Surface enhanced Raman scattering (SERS) is a powerful technique based on the intensification of the Raman signal because of the interaction of a molecule with a nanostructured metal surface. Electrochemically roughened silver has been widely used as SERS substrate in the qualitative detection of analytes at the ultra-trace level. However, its potential for quantitative analysis has not been widely exploited yet. In this work, the combination of time-resolved Raman spectroelectrochemistry with silver screen-printed electrodes (SPE) is proposed as a novel methodology for the preparation of SERS substrates. The in situ activation of a SERS substrate is performed simultaneously with the analytical detection of a probe molecule, controlling the process related to the preparation of the substrate and performing the analytical measurement in real time. The results show the good performance of silver SPE as electrochemically-induced surface-enhanced Raman scattering substrates. Raman spectra were recorded at fairly low integration times (250 ms), obtaining useful spectroelectrochemical information of the processes occurring at the SPE surface with excellent time-resolution. By recording the microscopic surface images at different times during the experiment, we correlated the different data obtained: structural, optical and electrochemical. Finally, the in situ activation process was used to obtain a suitable in situ SERS signal for ferricyanide and tris(bipyridine)ruthenium (II) quantification. The detection of the analytes at concentrations of a few tens of nM was possible with a low integration time (2 s) and good precision, demonstrating the exceptional performance of the Raman spectroelectrochemical method and the possibility to use cost-effective screen-printed electrodes for applications where a high sensitivity is needed.Ministerio de Economía y Competitividad (CTQ2017-83935-R, CTQ2014-55583-R, TEC2014-51940-C2-2R, CTQ2015-71955-REDT) and Junta de Castilla y León (BU033-U16

    Electrodeposited PdNi on a Ni rotating disk electrode highly active for glycerol electrooxidation in alkaline conditions

    No full text
    The development of alcohol-based electrolysis to enable the concurrent production of hydrogen with low electricity consumption still faces major challenges in terms of the maximum anodic current density achievable. Whilst noble metals enable a low electrode potential to facilitate alcohol oxidation, the deactivation of the catalyst at higher potentials makes it difficult for the obtained anodic current density to compete with water electrolysis. In this work the effect of significant parameters such as mass transport, glycerol and OH- concentration and electrolyte temperature on the glycerol electrooxidation reaction (GEOR) in alkaline conditions on a bimetallic catalyst PdNi/Ni-RDE (Pd0.9Ni0.1) has been studied to discern experimental conditions which maximise achievable anodic current density before deactivation occurs. The ratio of NaOH:glycerol in the electrolyte highly affects the rate of the GEOR. A maximum current density of 793 mA cm(-2) at-0.125 V vs. Hg/HgO through steady state polarisation curves was achieved at a moderate and intermediate rotation rate of 500 RPM in a 2 M NaOH and 1 M glycerol (ratio of 2) electrolyte at 80 & DEG;C. Shown here is a method of catalyst reactivation for enabling the longterm use of the PdNi/Ni-RDE for electrolysis at optimal conditions for extended periods of time (3 h at 300 mA cm(-2) and 10 h at 100 mA cm(-2)). Through scanning electron microscopy (SEM), X-ray photon electron spectroscopy (XPS) and X-ray diffraction (XRD) it is shown that the electrodeposition of Pd and Ni forms an alloy and that after 10 h of electrolysis the catalyst has chemical and structural stability. This study provides details on parameters significant to the maximising of the GEOR current density and the minimising of the debilitating effect that deactivation has on noble metal based electrocatalysts for the GEOR.& nbsp;(c) 2021 The Authors. Published by Elsevier Ltd.& nbsp

    Electrochemical surface oxidation enhanced Raman scattering

    Get PDF
    In this work, an unexpected enhancement of the Raman signal for uric acid during the electrochemical oxidation of a silver electrode is presented. This behavior cannot be easily explained using classical models of Surface Enhanced Raman Scattering (SERS). Time resolved Raman spectroelectrochemistry is used to study this interesting process strongly dependent on the experimental conditions. The new phenomenon was observed in different molecules and was found to be reproducible and robust, allowing us to use this methodology for the determination of citric acid. The enhancement of the Raman signal only takes place when a potential is applied to the electrode and therefore, this new phenomenon can be denoted as Electrochemical Surface Oxidation Enhanced Raman Scattering (EC-SOERS). In this work, EC-SOERS is presented not only as an alternative to SERS for detection of molecules but also as a reproducible process that can be used for quantitative analysisMinisterio de Economía y Competitividad (Grants CTQ2017-83935-R-AEI/FEDER-UE and CTQ2014-55583-R) and Junta de Castilla y León (Grant BU033-U16

    Glycerol Electrooxidation at Industrially Relevant Current Densities Using Electrodeposited PdNi/Nifoam Catalysts in Aerated Alkaline Media

    No full text
    Through glycerol electrooxidation, we demonstrate the viability of using a PdNi catalyst electrodeposited on Ni foam to facilitate industrially relevant rates of hydrogen generation while concurrently providing valuable organic chemicals as glycerol oxidation products. This electrocatalyst, in a solution of 2 M NaOH and 1 M glycerol at 80 & DEG;C, enabled current densities above 2000 mA cm(-2) (in a voltammetric sweep) to be obtained in atmospheres of both air and N-2. Repeated potential cycling under an aerated atmosphere to these exceptional current densities indicated a high stability of the catalyst. Through steady state polarisation curves, 1000 mA cm(-2) was reached below an anodic potential of 0.8 V vs RHE. Chronoamperometry showed glycerate and lactate being the major oxidation products, with increased selectivity for lactate at the expense of glycerate in aerated systems. Aerated atmospheres were demonstrated to consistently increase the apparent Faradaic efficiency to >100%, as determined by the concentration of oxidation products in solution. The excellent performance of PdNi/Ni in aerated solutions suggests that O-2 removal from the electrolyte is not needed for an industrial glycerol electrooxidation process, and that combining electrochemical and chemical glycerol oxidation, in the presence of dissolved O-2,O- presents an important process advantage

    Methane partial oxidation over a LaCr0.85Ru0.15O3 catalyst: Characterization, activity tests and kinetic modeling

    No full text
    A new LaCr0.85Ru0.15O3 perovskite-type catalyst for CH4 partial oxidation with a high activity and selectivity for syngas with good thermal stability and resistance against coking has been developed. In this paper, the catalyst preparation method, catalyst characterization, results of catalytic tests in a micro-reactor and kinetic modeling are discussed. A partial incorporation of Ru in the perovskite support has been demonstrated which can be responsible for the reported high activity and stability for this catalyst. Reactivity tests have been carried out at both low and high GHSV regimes (≈1–2 × 107 h−1); for the latter case the CH4–O2 partial oxidation reaction system has been studied at incomplete methane (7–18%) and O2 (20–65%) conversion, as rarely reported in the literature. The variation of temperature (650–850 °C) and feed gas composition (in terms of CH4, CO, CO2, H2 and H2O inlet partial pressure) allowed to study the reaction system over a wide range of experimental conditions gaining insight in the reaction mechanism. A kinetic model is proposed where CH4 partial oxidation, H2 and CO oxidation and water–gas shift are used to describe the involved lumped reaction network. External diffusion resistances have been found to be negligible whereas internal diffusion resistances have been accounted for by means of a single particle model able to describe the concentration profiles inside the catalyst pellet. Pre-exponential factors and activation energy values for all reactions have been estimated by means of a least square fitting of the experimental data. It is found that CH4 partial oxidation dominates the first region of the catalyst bed while H2 and CO oxidation become important in the remaining part of the bed.The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no. NMP3-LA-2011-262840 (DEMCAMER project).Peer Reviewe
    corecore