226 research outputs found

    Machine learning in Alzheimer's disease genetics

    Get PDF
    Traditional statistical approaches have advanced our understanding of the genetics of complex diseases, yet are limited to linear additive models. Here we applied machine learning (ML) to genome-wide data from 41,686 individuals in the largest European consortium on Alzheimer's disease (AD) to investigate the effectiveness of various ML algorithms in replicating known findings, discovering novel loci, and predicting individuals at risk. We utilised Gradient Boosting Machines (GBMs), biological pathway-informed Neural Networks (NNs), and Model-based Multifactor Dimensionality Reduction (MB-MDR) models. ML approaches successfully captured all genome-wide significant genetic variants identified in the training set and 22% of associations from larger meta-analyses. They highlight 6 novel loci which replicate in an external dataset, including variants which map to ARHGAP25, LY6H, COG7, SOD1 and ZNF597. They further identify novel association in AP4E1, refining the genetic landscape of the known SPPL2A locus. Our results demonstrate that machine learning methods can achieve predictive performance comparable to classical approaches in genetic epidemiology and have the potential to uncover novel loci that remain undetected by traditional GWAS. These insights provide a complementary avenue for advancing the understanding of AD genetics.</p

    Priorities for research on neuromodulatory subcortical systems in Alzheimer's disease: Position paper from the NSS PIA of ISTAART

    Get PDF
    The neuromodulatory subcortical system (NSS) nuclei are critical hubs for survival, hedonic tone, and homeostasis. Tau-associated NSS degeneration occurs early in Alzheimer's disease (AD) pathogenesis, long before the emergence of pathognomonic memory dysfunction and cortical lesions. Accumulating evidence supports the role of NSS dysfunction and degeneration in the behavioral and neuropsychiatric manifestations featured early in AD. Experimental studies even suggest that AD-associated NSS degeneration drives brain neuroinflammatory status and contributes to disease progression, including the exacerbation of cortical lesions. Given the important pathophysiologic and etiologic roles that involve the NSS in early AD stages, there is an urgent need to expand our understanding of the mechanisms underlying NSS vulnerability and more precisely detail the clinical progression of NSS changes in AD. Here, the NSS Professional Interest Area of the International Society to Advance Alzheimer's Research and Treatment highlights knowledge gaps about NSS within AD and provides recommendations for priorities specific to clinical research, biomarker development, modeling, and intervention. HIGHLIGHTS: Neuromodulatory nuclei degenerate in early Alzheimer's disease pathological stages. Alzheimer's pathophysiology is exacerbated by neuromodulatory nuclei degeneration. Neuromodulatory nuclei degeneration drives neuropsychiatric symptoms in dementia. Biomarkers of neuromodulatory integrity would be value-creating for dementia care. Neuromodulatory nuclei present strategic prospects for disease-modifying therapies

    Humanin, a Cytoprotective Peptide, Is Expressed in Carotid Artherosclerotic Plaques in Humans

    Get PDF
    The mechanism of atherosclerotic plaque progression leading to instability, rupture, and ischemic manifestation involves oxidative stress and apoptosis. Humanin (HN) is a newly emerging endogenously expressed cytoprotective peptide. Our goal was to determine the presence and localization of HN in carotid atherosclerotic plaques.Plaque specimens from 34 patients undergoing carotid endarterectomy were classified according to symptomatic history. Immunostaining combined with digital microscopy revealed greater expression of HN in the unstable plaques of symptomatic compared to asymptomatic patients (29.42±2.05 vs. 14.14±2.13% of plaque area, p<0.0001). These data were further confirmed by immunoblot (density of HN/β-actin standard symptomatic vs. asymptomatic 1.32±0.14 vs. 0.79±0.11, p<0.01). TUNEL staining revealed a higher proportion of apoptotic nuclei in the plaques of symptomatic patients compared to asymptomatic (68.25±3.61 vs. 33.46±4.46% of nuclei, p<0.01). Double immunofluorescence labeling revealed co-localization of HN with macrophages (both M1 and M2 polarization), smooth muscle cells, fibroblasts, and dendritic cells as well as with inflammatory markers MMP2 and MMP9.The study demonstrates a higher expression of HN in unstable carotid plaques that is localized to multiple cell types within the plaque. These data support the involvement of HN in atherosclerosis, possibly as an endogenous response to the inflammatory and apoptotic processes within the atheromatous plaque

    Machine learning in Alzheimer's disease genetics.

    Get PDF
    Traditional statistical approaches have advanced our understanding of the genetics of complex diseases, yet are limited to linear additive models. Here we applied machine learning (ML) to genome-wide data from 41,686 individuals in the largest European consortium on Alzheimer's disease (AD) to investigate the effectiveness of various ML algorithms in replicating known findings, discovering novel loci, and predicting individuals at risk. We utilised Gradient Boosting Machines (GBMs), biological pathway-informed Neural Networks (NNs), and Model-based Multifactor Dimensionality Reduction (MB-MDR) models. ML approaches successfully captured all genome-wide significant genetic variants identified in the training set and 22% of associations from larger meta-analyses. They highlight 6 novel loci which replicate in an external dataset, including variants which map to ARHGAP25, LY6H, COG7, SOD1 and ZNF597. They further identify novel association in AP4E1, refining the genetic landscape of the known SPPL2A locus. Our results demonstrate that machine learning methods can achieve predictive performance comparable to classical approaches in genetic epidemiology and have the potential to uncover novel loci that remain undetected by traditional GWAS. These insights provide a complementary avenue for advancing the understanding of AD genetics

    International Lower Limb Collaborative Paediatric subpopulation analysis (INTELLECT-P) study: multicentre, international, retrospective audit of paediatric open fractures

    Get PDF

    Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores

    Get PDF
    Funder: Funder: Fundación bancaria ‘La Caixa’ Number: LCF/PR/PR16/51110003 Funder: Grifols SA Number: LCF/PR/PR16/51110003 Funder: European Union/EFPIA Innovative Medicines Initiative Joint Number: 115975 Funder: JPco-fuND FP-829-029 Number: 733051061Genetic discoveries of Alzheimer's disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer's disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer's disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer's disease

    Machine learning in Alzheimer’s disease genetics

    Get PDF
    : Traditional statistical approaches have advanced our understanding of the genetics of complex diseases, yet are limited to linear additive models. Here we applied machine learning (ML) to genome-wide data from 41,686 individuals in the largest European consortium on Alzheimer's disease (AD) to investigate the effectiveness of various ML algorithms in replicating known findings, discovering novel loci, and predicting individuals at risk. We utilised Gradient Boosting Machines (GBMs), biological pathway-informed Neural Networks (NNs), and Model-based Multifactor Dimensionality Reduction (MB-MDR) models. ML approaches successfully captured all genome-wide significant genetic variants identified in the training set and 22% of associations from larger meta-analyses. They highlight 6 novel loci which replicate in an external dataset, including variants which map to ARHGAP25, LY6H, COG7, SOD1 and ZNF597. They further identify novel association in AP4E1, refining the genetic landscape of the known SPPL2A locus. Our results demonstrate that machine learning methods can achieve predictive performance comparable to classical approaches in genetic epidemiology and have the potential to uncover novel loci that remain undetected by traditional GWAS. These insights provide a complementary avenue for advancing the understanding of AD genetics

    Demographic, clinical, biomarker, and neuropathological correlates of posterior cortical atrophy: an international cohort study and individual participant data meta-analysis

    Get PDF
    Background: Posterior cortical atrophy is a rare syndrome characterised by early, prominent, and progressive impairment in visuoperceptual and visuospatial processing. The disorder has been associated with underlying neuropathological features of Alzheimer's disease, but large-scale biomarker and neuropathological studies are scarce. We aimed to describe demographic, clinical, biomarker, and neuropathological correlates of posterior cortical atrophy in a large international cohort. Methods: We searched PubMed between database inception and Aug 1, 2021, for all published research studies on posterior cortical atrophy and related terms. We identified research centres from these studies and requested deidentified, individual participant data (published and unpublished) that had been obtained at the first diagnostic visit from the corresponding authors of the studies or heads of the research centres. Inclusion criteria were a clinical diagnosis of posterior cortical atrophy as defined by the local centre and availability of Alzheimer's disease biomarkers (PET or CSF), or a diagnosis made at autopsy. Not all individuals with posterior cortical atrophy fulfilled consensus criteria, being diagnosed using centre-specific procedures or before development of consensus criteria. We obtained demographic, clinical, biofluid, neuroimaging, and neuropathological data. Mean values for continuous variables were combined using the inverse variance meta-analysis method; only research centres with more than one participant for a variable were included. Pooled proportions were calculated for binary variables using a restricted maximum likelihood model. Heterogeneity was quantified using I2. Findings: We identified 55 research centres from 1353 papers, with 29 centres responding to our request. An additional seven centres were recruited by advertising via the Alzheimer's Association. We obtained data for 1092 individuals who were evaluated at 36 research centres in 16 countries, the other sites having not responded to our initial invitation to participate to the study. Mean age at symptom onset was 59·4 years (95% CI 58·9-59·8; I2=77%), 60% (56-64; I2=35%) were women, and 80% (72-89; I2=98%) presented with posterior cortical atrophy pure syndrome. Amyloid β in CSF (536 participants from 28 centres) was positive in 81% (95% CI 75-87; I2=78%), whereas phosphorylated tau in CSF (503 participants from 29 centres) was positive in 65% (56-75; I2=87%). Amyloid-PET (299 participants from 24 centres) was positive in 94% (95% CI 90-97; I2=15%), whereas tau-PET (170 participants from 13 centres) was positive in 97% (93-100; I2=12%). At autopsy (145 participants from 13 centres), the most frequent neuropathological diagnosis was Alzheimer's disease (94%, 95% CI 90-97; I2=0%), with common co-pathologies of cerebral amyloid angiopathy (71%, 54-88; I2=89%), Lewy body disease (44%, 25-62; I2=77%), and cerebrovascular injury (42%, 24-60; I2=88%). Interpretation: These data indicate that posterior cortical atrophy typically presents as a pure, young-onset dementia syndrome that is highly specific for underlying Alzheimer's disease pathology. Further work is needed to understand what drives cognitive vulnerability and progression rates by investigating the contribution of sex, genetics, premorbid cognitive strengths and weaknesses, and brain network integrity. Funding: None

    International Lower Limb Collaborative (INTELLECT) study: a multicentre, international retrospective audit of lower extremity open fractures

    Get PDF
    corecore