116,519 research outputs found

    Unified life detection system: A concept

    Get PDF
    Systematic investigation of techniques and hardware which could be utilized in life detection system has resulted in identification of group of candidate concepts and selection of "unified system". Theme of concept permits greatest flexibility in procedural details for experiments which can be performed in individual ampules

    VSAERO analysis of tip planforms for the free-tip rotor

    Get PDF
    The results of a numerical analysis of two interacting lifting surfaces separated in the spanwise direction by a narrow gap are presented. The configuration consists of a semispan wing with the last 32 percent of the span structurally separated from the inboard section. The angle of attack of the outboard section is set independently from that of the inboard section. In the present study, the three-dimensional panel code VSAERO is used to perform the analysis. Computed values of tip surface lift and pitching moment coefficients are correlated with experimental data to determine the proper approach to model the gap region between the surfaces. Pitching moment data for various tip planforms are also presented to show how the variation of tip pitching moment with angle of attack may be increased easily in incompressible flow. Calculated three-dimensional characteristics in compressible flow at Mach numbers of 0.5 and 0.7 are presented for new tip planform designs. An analysis of sectional aerodynamic center shift as a function of Mach number is also included for a representative tip planform. It is also shown that the induced drag of the tip surface is reduced for negative incidence angles relative to the inboard section. The results indicate that this local drag reduction overcomes the associated increase in wing induced drag at high wing lift coefficients

    Fertility and early pregnancy outcomes after treatment for cervical intraepithelial neoplasia: systematic review and meta-analysis

    Get PDF
    OBJECTIVE: To determine the impact of cervical excision for cervical intraepithelial neoplasia on fertility and early pregnancy outcomes. DESIGN: Systematic review and meta-analysis of cohort studies. DATA SOURCES: Medline and Embase. ELIGIBILITY CRITERIA: Studies assessing fertility and early pregnancy outcomes in women with a history of treatment for cervical intraepithelial neoplasia versus untreated women. We classified the included studies according to treatment type and fertility or early pregnancy endpoint. ANALYSIS: Pooled relative risks and 95% confidence intervals using a random effect model, and interstudy heterogeneity with I(2) statistics. RESULTS: 15 studies fulfilled the inclusion criteria and were included. The meta-analysis did not provide any evidence that treatment for cervical intraepithelial neoplasia adversely affected the chances of conception. The overall pregnancy rate was higher for treated women than for untreated women (four studies; 43% v 38%, pooled relative risk 1.29, 95% confidence interval 1.02 to 1.64), although the heterogeneity between studies was high (P<0.0001). Pregnancy rates did not differ between women with an intention to conceive (two studies; 88% v 95%, 0.93, 0.80 to 1.08) and the number requiring more than 12 months to conceive (three studies, 15% v 9%, 1.45, 0.89 to 2.37). Although the rates for total miscarriages (10 studies; 4.6% v 2.8%, 1.04, 0.90 to 1.21) and miscarriage in the first trimester (four studies; 9.8% v 8.4%, 1.16, 0.80 to 1.69) was similar for treated and untreated women, cervical treatment was associated with a significantly increased risk of miscarriage in the second trimester. The rate was higher for treated women than for untreated women (eight studies; 1.6% v 0.4%, 16,558 women; 2.60, 1.45 to 4.67). The number of ectopic pregnancies (1.6% v 0.8%; 1.89, 1.50 to 2.39) and terminations (12.2% v 7.4%; 1.71, 1.31 to 2.22) was also higher for treated women. CONCLUSION: There is no evidence suggesting that treatment for cervical intraepithelial neoplasia adversely affects fertility, although treatment was associated with a significantly increased risk of miscarriages in the second trimester. Research should explore mechanisms that may explain this increase in risk and stratify the impact that treatment may have on fertility and early pregnancy outcomes by the size of excision and treatment method used

    Fisher Zeroes and Singular Behaviour of the Two Dimensional Potts Model in the Thermodynamic Limit

    Get PDF
    The duality transformation is applied to the Fisher zeroes near the ferromagnetic critical point in the q>4 state two dimensional Potts model. A requirement that the locus of the duals of the zeroes be identical to the dual of the locus of zeroes in the thermodynamic limit (i) recovers the ratio of specific heat to internal energy discontinuity at criticality and the relationships between the discontinuities of higher cumulants and (ii) identifies duality with complex conjugation. Conjecturing that all zeroes governing ferromagnetic singular behaviour satisfy the latter requirement gives the full locus of such Fisher zeroes to be a circle. This locus, together with the density of zeroes is then shown to be sufficient to recover the singular form of the thermodynamic functions in the thermodynamic limit.Comment: 10 pages, 0 figures, LaTeX. Paper expanded and 2 references added clarifying duality relationships between discontinuities in higher cumulant

    Dynamical signatures of the vulcanization transition

    Full text link
    Dynamical properties of vulcanized polymer networks are addressed via a Rouse-type model that incorporates the effect of permanent random crosslinks. The incoherent intermediate scattering function is computed in the sol and gel phases, and at the vulcanization transition between them. At any nonzero crosslink density within the sol phase Kohlrausch relaxation is found. The critical point is signalled by divergence of the longest time-scale, and at this point the scattering function decays algebraically, whereas within the gel phase it acquires a time-persistent part identified with the gel fraction.Comment: 4 page

    The dynamical equation of the spinning electron

    Full text link
    We obtain by invariance arguments the relativistic and non-relativistic invariant dynamical equations of a classical model of a spinning electron. We apply the formalism to a particular classical model which satisfies Dirac's equation when quantised. It is shown that the dynamics can be described in terms of the evolution of the point charge which satisfies a fourth order differential equation or, alternatively, as a system of second order differential equations by describing the evolution of both the center of mass and center of charge of the particle. As an application of the found dynamical equations, the Coulomb interaction between two spinning electrons is considered. We find from the classical viewpoint that these spinning electrons can form bound states under suitable initial conditions. Since the classical Coulomb interaction of two spinless point electrons does not allow for the existence of bound states, it is the spin structure that gives rise to new physical phenomena not described in the spinless case. Perhaps the paper may be interesting from the mathematical point of view but not from the point of view of physics.Comment: Latex2e, 14 pages, 5 figure

    An electronic Mach-Zehnder interferometer in the Fractional Quantum Hall effect

    Full text link
    We compute the interference pattern of a Mach-Zehnder interferometer operating in the fractional quantum Hall effect. Our theoretical proposal is inspired by a remarkable experiment on edge states in the Integer Quantum Hall effect (IQHE). The Luttinger liquid model is solved via two independent methods: refermionization at nu=1/2 and the Bethe Ansatz solution available for Laughlin fractions. The current differs strongly from that of single electrons in the strong backscattering regime. The Fano factor is periodic in the flux, and it exhibits a sharp transition from sub-Poissonian (charge e/2) to Poissonian (charge e) in the neighborhood of destructive interferences

    Viscoelasticity near the gel-point: a molecular dynamics study

    Full text link
    We report on extensive molecular dynamics simulations on systems of soft spheres of functionality f, i.e. particles that are capable of bonding irreversibly with a maximum of f other particles. These bonds are randomly distributed throughout the system and imposed with probability p. At a critical concentration of bonds, p_c approximately equal to 0.2488 for f=6, a gel is formed and the shear viscosity \eta diverges according to \eta ~ (p_c-p)^{-s}. We find s is approximately 0.7 in agreement with some experiments and with a recent theoretical prediction based on Rouse dynamics of phantom chains. The diffusion constant decreases as the gel point is approached but does not display a well-defined power law.Comment: 4 pages, 4 figure

    Coerced Mechanical Coarsening of Nanoparticle Assemblies

    Get PDF
    Coarsening is a ubiquitous phenomenon [1-3] that underpins countless processes in nature, including epitaxial growth [1,3,4], the phase separation of alloys, polymers and binary fluids [2], the growth of bubbles in foams5, and pattern formation in biomembranes6. Here we show, in the first real-time experimental study of the evolution of an adsorbed colloidal nanoparticle array, that tapping-mode atomic force microscopy (TM-AFM) can drive the coarsening of Au nanoparticle assemblies on silicon surfaces. Although the growth exponent has a strong dependence on the initial sample morphology, our observations are largely consistent with modified Ostwald ripening processes [7-9]. To date, ripening processes have been exclusively considered to be thermally activated, but we show that nanoparticle assemblies can be mechanically coerced towards equilibrium, representing a new approach to directed coarsening. This strategy enables precise control over the evolution of micro- and nanostructures
    • …
    corecore