The duality transformation is applied to the Fisher zeroes near the
ferromagnetic critical point in the q>4 state two dimensional Potts model. A
requirement that the locus of the duals of the zeroes be identical to the dual
of the locus of zeroes in the thermodynamic limit (i) recovers the ratio of
specific heat to internal energy discontinuity at criticality and the
relationships between the discontinuities of higher cumulants and (ii)
identifies duality with complex conjugation. Conjecturing that all zeroes
governing ferromagnetic singular behaviour satisfy the latter requirement gives
the full locus of such Fisher zeroes to be a circle. This locus, together with
the density of zeroes is then shown to be sufficient to recover the singular
form of the thermodynamic functions in the thermodynamic limit.Comment: 10 pages, 0 figures, LaTeX. Paper expanded and 2 references added
clarifying duality relationships between discontinuities in higher cumulant