9,944 research outputs found
Lithium production on a low-mass secondary in a black hole soft X-ray transient
We examine production of Li on the surface of a low-mass secondary in a black
hole soft X-ray transient (BHSXT) through the spallation of CNO nuclei by
neutrons which are ejected from a hot (> 10 MeV) advection-dominated accretion
flow (ADAF) around the black hole. Using updated binary parameters, cross
sections of neutron-induced spallation reactions, and mass accretion rates in
ADAF derived from the spectrum fitting of multi-wavelength observations of
quiescent BHSXTs, we obtain the equilibrium abundances of Li by equating the
production rate of Li and the mass transfer rate through accretion to the black
hole. The resulting abundances are found to be in good agreement with the
observed values in seven BHSXTs. We note that the abundances vary in a
timescale longer than a few months in our model. Moreover, the isotopic ratio
Li6/Li7 is calculated to be about 0.7--0.8 on the secondaries, which is much
higher than the ratio measured in meteorites. Detection of such a high value is
favorable to the production of Li via spallation and the existence of a hot
accretion flow, rather than an accretion disk corona system in quiescent BHSXT.Comment: 4 pages, 3 figures, and 2 tables, submitted to Astrophyscal Jounal
Letter
Ising magnetism and ferroelectricity in CaCoMnO
The origin of both the Ising chain magnetism and ferroelectricity in
CaCoMnO is studied by electronic structure calculations
and x-ray absorption spectroscopy. We find that CaCoMnO has the
alternate trigonal prismatic Co and octahedral Mn sites in the
spin chain. Both the Co and Mn are in the high spin state. In
addition, the Co has a huge orbital moment of 1.7 which is
responsible for the significant Ising magnetism. The centrosymmetric crystal
structure known so far is calculated to be unstable with respect to exchange
striction in the experimentally observed
antiferromagnetic structure for the Ising chain. The calculated inequivalence
of the Co-Mn distances accounts for the ferroelectricity.Comment: 4 pages, 3 figures, PRL in press (changes made upon referees
comments
Demonstration of a Lightguide Detector for Liquid Argon TPCs
We report demonstration of light detection in liquid argon using an acrylic
lightguide detector system. This opens the opportunity for development of an
inexpensive, large-area light collection system for large liquid argon time
projection chambers. The guides are constructed of acrylic, with TPB embedded
in a surface coating with a matching index of refraction. We study the response
to early scintillation light produced by a 5.3 MeV alpha. We measure coating
responses from 7 to 8 PE on average, compared to an ideal expectation of 10 PE
on average. We estimate the attenuation length of light along the lightguide
bar to be greater than 0.5 m. The coating response and the attenuation length
can be improved; we show, however, that these results are already sufficient
for triggering in a large detector
Electronically highly cubic conditions for Ru in alpha-RuCl3
We studied the local Ru 4d electronic structure of alpha-RuCl3 by means of
polarization dependent x-ray absorption spectroscopy at the Ru-L2,3 edges. We
observed a vanishingly small linear dichroism indicating that electronically
the Ru 4d local symmetry is highly cubic. Using full multiplet cluster
calculations we were able to reproduce the spectra excellently and to extract
that the trigonal splitting of the t2g orbitals is -12 meV, i.e.
negligible as compared to the Ru 4d spin-orbit coupling constant. Consistent
with our magnetic circular dichroism measurements, we found that the ratio of
the orbital and spin moments is 2.0, the value expected for a Jeff = 1/2 ground
state. We have thus shown that as far as the Ru 4d local properties are
concerned, alpha-RuCl3 is an ideal candidate for the realization of Kitaev
physics
Underlying role of mitochondrial mutagenesis in the pathogenesis of a disease and current approaches for translational research
Mitochondrial diseases have been extensively investigated over the last three decades but many questions regarding their underlying aetiologies remain unanswered. Mitochondrial dysfunction is not only responsible for a range of neurological and myopathy diseases, but is also considered pivotal in a broader spectrum of common diseases such as epilepsy, autism and bipolar disorder. These disorders are a challenge to diagnose and treat as their aetiology might be multifactorial. In this review, the focus is placed on potential mechanisms capable of introducing defects in mitochondria resulting in disease. Special attention is given to the influence of xenobiotics on mitochondria; environmental factors inducing mutations or epigenetic changes in the mitochondrial genome can alter its expression and impair the whole cell’s functionality. Specifically, we suggest that environmental agents can cause damage by generating abasic sites in mitochondrial DNA, which consequently lead to mutagenesis. Abasic sites are observed in DNA after spontaneous loss of a nucleic base (e.g., “apurinic sites” after loss of purines, adenine or guanine) or through base excision repair; if left unrepaired, they can produce mutagenic DNA lesions. Moreover, we describe current approaches for handling mitochondrial diseases, as well as available prenatal diagnostic tests towards eliminating these maternally-inherited diseases. Undoubtedly, more research is required, as current therapeutic approaches mostly employ palliative therapies rather than targeting primary mechanisms or prophylactic approaches. More effort is needed into further unravelling the relationship between xenobiotics and mitochondria as the extent of influence in mitochondrial pathogenesis is increasingly recognised
Self-consistent interface properties of d and s-wave superconductors
We develop a method to solve the Bogoliubov de Gennes equation for
superconductors self-consistently, using the recursion method. The method
allows the pairing interaction to be either local or non-local corresponding to
s and d-wave superconductivity, respectively. Using this method we examine the
properties of various S-N and S-S interfaces. In particular we calculate the
spatially varying density of states and order parameter for the following
geometries (i) s-wave superconductor to normal metal, (ii) d-wave
superconductor to normal metal, (iii) d-wave superconductor to s-wave
superconductor. We show that the density of states at the interface has a
complex structure including the effects of normal surface Friedel oscillations,
the spatially varying gap and Andeev states within the gap, and the subtle
effects associated with the interplay of the gap and the normal van Hove peaks
in the density of states. In the case of bulk d-wave superconductors the
surface leads to mixing of different order parameter symmetries near the
interface and substantial local filling in of the gap.Comment: 20 pages, Latex and 8 figure
Quasiparticle Interface States in Junctions Involving d-Wave Superconductors
Influence of surface pair breaking, barrier transmission and phase difference
on quasiparticle bound states in junctions with d-wave superconductors is
examined. Based on the quasiclassical theory of superconductivity, an approach
is developed to handle interface bound states. It is shown in SIS' junctions
that low energy bound states get their energies reduced by surface pair
breaking, which can be taken into account by introducing an effective order
parameter for each superconductor at the junction barrier. More interestingly,
for the interface bound states near the continuous spectrum the effect of
surface pair breaking may result in a splitting of the bound states. In the
tunneling limit this can lead to a square root dependence of a nonequilibrium
Josephson current on the barrier transmision, which means an enhancement as
compared to the conventional critical current linear in the transmission.
Reduced broadening of bound states in NIS junctions due to surface pair
breaking is found.Comment: 27 pages, Latex fil
A Q-Ising model application for linear-time image segmentation
A computational method is presented which efficiently segments digital
grayscale images by directly applying the Q-state Ising (or Potts) model. Since
the Potts model was first proposed in 1952, physicists have studied lattice
models to gain deep insights into magnetism and other disordered systems. For
some time, researchers have realized that digital images may be modeled in much
the same way as these physical systems (i.e., as a square lattice of numerical
values). A major drawback in using Potts model methods for image segmentation
is that, with conventional methods, it processes in exponential time. Advances
have been made via certain approximations to reduce the segmentation process to
power-law time. However, in many applications (such as for sonar imagery),
real-time processing requires much greater efficiency. This article contains a
description of an energy minimization technique that applies four Potts
(Q-Ising) models directly to the image and processes in linear time. The result
is analogous to partitioning the system into regions of four classes of
magnetism. This direct Potts segmentation technique is demonstrated on
photographic, medical, and acoustic images.Comment: 7 pages, 8 figures, revtex, uses subfigure.sty. Central European
Journal of Physics, in press (2010
Interface effects on the shot noise in normal metal- d-wave superconductor Junctions
The current fluctuation in normal metal / d-wave superconductor junctions are
studied for various orientation of the crystal by taking account of the spatial
variation of the pair potentials. Not only the zero-energy Andreev bound states
(ZES) but also the non-zero energy Andreev bound states influence on the
properties of differential shot noise. At the tunneling limit, the noise power
to current ratio at zero voltage becomes 0, once the ZES are formed at the
interface. Under the presence of a subdominant s-wave component at the
interface which breaks time-reversal symmetry, the ratio becomes 4eComment: 13 pages, 3 figure
Unravelling the transport mechanism of pore-filled membranes for hydrogen separation
The permeation characteristics of palladium pore filled (PF) membranes have been investigated with gas permeation and structural characterization of the membranes. PF membranes have been prepared by filling with Pd the nanoporous γ-Al2O3/YSZ (or pure YSZ) layer supported onto porous α-Al2O3 and ZrO2. The number of nanoporous layers and the applied vacuum level during the electroless plating process have been studied. Gas permeation properties of the PF membranes have been determined in a temperature range of 300-550 °C. The measured hydrogen permeances have been found to be lower than previously reported for similar membranes. It has been found that the hydrogen fluxes do not depend on the thickness of the nanoporous layers (γ-Al2O3/YSZ or pure YSZ) or on the vacuum pump employed for filling with Pd. The physicochemical characterization performed showed that the palladium deposited does not form a percolated network across the mesoporous layer(s), leading to low hydrogen permeances and thus low H2/N2 perm-selectivities.The presented work is funded within FERRET project as part of European Union’s Seventh
Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology
Initiative under grant agreement n° 621181.
The Talos TEM was funded as part of HEFCE funding in the UK
Research Partnership Investment Funding (UKRPIF) Manchester RPIF Round 2
- …