A computational method is presented which efficiently segments digital
grayscale images by directly applying the Q-state Ising (or Potts) model. Since
the Potts model was first proposed in 1952, physicists have studied lattice
models to gain deep insights into magnetism and other disordered systems. For
some time, researchers have realized that digital images may be modeled in much
the same way as these physical systems (i.e., as a square lattice of numerical
values). A major drawback in using Potts model methods for image segmentation
is that, with conventional methods, it processes in exponential time. Advances
have been made via certain approximations to reduce the segmentation process to
power-law time. However, in many applications (such as for sonar imagery),
real-time processing requires much greater efficiency. This article contains a
description of an energy minimization technique that applies four Potts
(Q-Ising) models directly to the image and processes in linear time. The result
is analogous to partitioning the system into regions of four classes of
magnetism. This direct Potts segmentation technique is demonstrated on
photographic, medical, and acoustic images.Comment: 7 pages, 8 figures, revtex, uses subfigure.sty. Central European
Journal of Physics, in press (2010