63 research outputs found

    Delayed maturity does not offset negative impact afflicted by ectoparasitism in salmon

    Get PDF
    The negative effects of parasitism on host population dynamics may be mediated by plastic compensatory life-history changes in hosts. Theory predicts that hosts should shift their life-history towards early reproduction in response to virulent pathogens to maximize reproduction before death. However, for sublethal infections that affect growth, hosts whose fecundity is correlated with body size are predicted to shift towards delayed reproduction associated with larger body size and higher fecundity. This has been observed in Atlantic salmon and parasitic sea lice, via mark-recapture studies that recover mature fish from paired groups of control and parasiticide-treated smolts. We investigated whether such louse-induced changes to age at maturity can offset some of the negative effect of mortality on population growth rate in salmon using a structured population matrix model. Model results show that delayed maturity can partially compensate for reduced survival. However, this only occurs when marine survival is moderate to poor and growth conditions at sea are good. Also, the impact of delayed maturity on population growth when parameterizing the model with empirical data is negligible compared with effects of direct mortality. Our model thus suggests that management that works on minimizing the effect of sea lice from fish farms on wild salmon should focus mainly on correctly quantifying the effect of parasite-induced mortality during the smolt stage if the goal is to maximize population growth rate.publishedVersio

    Experimental evidence of a pathogen invasion threshold

    Get PDF
    © 2018 The Authors. Host density thresholds to pathogen invasion separate regions of parameter space corresponding to endemic and diseasefree states. The host density threshold is a central concept in theoretical epidemiology and a common target of human and wildlife disease control programmes, but there is mixed evidence supporting the existence of thresholds, especially in wildlife populations or for pathogens with complex transmission modes (e.g. environmental transmission). Here, we demonstrate the existence of a host density threshold for an environmentally transmitted pathogen by combining an epidemiological model with a microcosm experiment. Experimental epidemics consisted of replicate populations of naive crustacean zooplankton (Daphnia dentifera) hosts across a range of host densities (20–640 hosts l−1) that were exposed to an environmentally transmitted fungal pathogen (Metschnikowia bicuspidata). Epidemiological model simulations, parametrized independently of the experiment, qualitatively predicted experimental pathogen invasion thresholds. Variability in parameter estimates did not strongly influence outcomes, though systematic changes to key parameters have the potential to shift pathogen invasion thresholds. In summary, we provide one of the first clear experimental demonstrations of pathogen invasion thresholds in a replicated experimental system, and provide evidence that such thresholds may be predictable using independently constructed epidemiological models

    Generational Spreading Speed and the Dynamics of Population Range Expansion

    Get PDF
    abstract: Some of the most fundamental quantities in population ecology describe the growth and spread of populations. Population dynamics are often characterized by the annual rate of increase, l, or the generational rate of increase, R 0 . Analyses involving R 0 have deepened our understanding of disease dynamics and life-history complexities beyond that afforded by analysis of annual growth alone. While range expansion is quantified by the annual spreading speed, a spatial analog of l, an R 0 -like expression for the rate of spread is missing. Using integrodifference models, we derive the appropriate generational spreading speed for populations with complex (stage-structured) life histories. The resulting measure, relevant to locations near the expanding edge of a (re)colonizing population, incorporates both local population growth and explicit spatial dispersal rather than solely growth across a population, as is the case for R 0 . The calculations for generational spreading speed are often simpler than those for annual spreading speed, and analytic or partial analytic solutions can yield insight into the processes that facilitate or slow a population's spatial spread. We analyze the spatial dynamics of green crabs, sea otters, and teasel as examples to demonstrate the flexibility of our methods and the intuitive insights that they afford

    Modeling parasite dynamics on farmed salmon for precautionary conservation management of wild salmon

    Get PDF
    Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March-June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions

    Competing Conservation Objectives for Predators and Prey: Estimating Killer Whale Prey Requirements for Chinook Salmon

    Get PDF
    Ecosystem-based management (EBM) of marine resources attempts to conserve interacting species. In contrast to single-species fisheries management, EBM aims to identify and resolve conflicting objectives for different species. Such a conflict may be emerging in the northeastern Pacific for southern resident killer whales (Orcinus orca) and their primary prey, Chinook salmon (Oncorhynchus tshawytscha). Both species have at-risk conservation status and transboundary (Canada–US) ranges. We modeled individual killer whale prey requirements from feeding and growth records of captive killer whales and morphometric data from historic live-capture fishery and whaling records worldwide. The models, combined with caloric value of salmon, and demographic and diet data for wild killer whales, allow us to predict salmon quantities needed to maintain and recover this killer whale population, which numbered 87 individuals in 2009. Our analyses provide new information on cost of lactation and new parameter estimates for other killer whale populations globally. Prey requirements of southern resident killer whales are difficult to reconcile with fisheries and conservation objectives for Chinook salmon, because the number of fish required is large relative to annual returns and fishery catches. For instance, a U.S. recovery goal (2.3% annual population growth of killer whales over 28 years) implies a 75% increase in energetic requirements. Reducing salmon fisheries may serve as a temporary mitigation measure to allow time for management actions to improve salmon productivity to take effect. As ecosystem-based fishery management becomes more prevalent, trade-offs between conservation objectives for predators and prey will become increasingly necessary. Our approach offers scenarios to compare relative influence of various sources of uncertainty on the resulting consumption estimates to prioritise future research efforts, and a general approach for assessing the extent of conflict between conservation objectives for threatened or protected wildlife where the interaction between affected species can be quantified

    Sea lice infestations on juvenile chum and pink salmon in the Broughton Archipelago, Canada, from 2003 to 2012

    Get PDF
    Juvenile pink salmon Oncorhynchus gorbuscha and chum salmon O. keta were sampled by beach or purse seine to assess levels of sea lice infestation in the Knight Inlet and Broughton Archipelago regions of coastal British Columbia, Canada, during the months of March to July from 2003 to 2012. Beach seine data were analyzed for sea lice infestation that was de - scribed in terms of prevalence, abundance, intensity, and intensity per unit length. The median annual prevalence for chum was 30%, ranging from 14% (in 2008 and 2009) to 73% (in 2004), while for pink salmon, the median was 27% and ranged from 10% (in 2011) to 68% (in 2004). Annual abundance varied from 0.2 to 5 sea lice per fish with a median of 0.47 for chum and from 0.1 to 3 lice (median 0.42) for pink salmon. Annual infestation followed broadly similar trends for both chum and pink salmon. However, the abundance and intensity of Lepeophtheirus salmonis and Caligus clemensi, the 2 main sea lice species of interest, were significantly greater on chum than on pink salmon in around half of the years studied. Logistic regression with random effect was used to model prevalence of sea lice infestation for the combined beach and purse seine data. The model suggested inter-annual variation as well as a spatial clustering effect on the prevalence of sea lice infestation in both chum and pink salmon. Fish length had an effect on prevalence, although the nature of this effect differed according to host species

    Impact of parasites on salmon recruitment in the Northeast Atlantic Ocean

    Get PDF
    Parasites may have large effects on host population dynamics, marine fisheries and conservation, but a clear elucidation of their impact is limited by a lack of ecosystem-scale experimental data. We conducted a meta-analysis of replicated manipulative field experiments concerning the influence of parasitism by crustaceans on the marine survival of Atlantic salmon (Salmo salar L.). The data include 24 trials in which tagged smolts (totalling 283 347 fish; 1996-2008) were released as paired control and parasiticide-treated groups into 10 areas of Ireland and Norway. All experimental fish were infectionfree when released into freshwater, and a proportion of each group was recovered as adult recruits returning to coastal waters 1 or more years later. Treatment had a significant positive effect on survival to recruitment, with an overall effect size (odds ratio) of 1.29 that corresponds to an estimated loss of 39 per cent (95% CI: 18-55%) of adult salmon recruitment. The parasitic crustaceans were probably acquired during early marine migration in areas that host large aquaculture populations of domesticated salmon, which elevate local abundances of ectoparasitic copepods-particularly Lepeophtheirus salmonis. These results provide experimental evidence from a large marine ecosystem that parasites can have large impacts on fish recruitment, fisheries and conservation

    Population biology of infectious diseases shared by wild and farmed fish

    No full text
    Global fisheries landings ceased increasing decades ago, causing an increasing shortfall in wild seafood supply and an expansion of aquaculture. The abundance of domesticated fishes now dwarfs related wild fishes in some coastal seas, changing the dynamics of their infectious diseases. Transport and trade of seafood, feed, eggs, and broodstock bring pathogens into new regions and into contact with na誰ve hosts. Density-dependent transmission creates threshold effects where disease can abruptly switch from endemic to epizootic dynamics. Hydrodynamics allow pathogens to disperse broadly, interconnecting farms into meta-populations of domesticated host fish in regions that also support related species of wild fish. Spill-over and spill-back dynamics of pathogen transmission between wild and farmed fish can create novel transmission pathways or bioamplify pathogen abundance, potentially depressing or endangering wild fish. Mortality from natural predator-prey interactions may be synergistic or compensatory with these increased infections. Domestic environments may favour the evolution of undesirable pathogen traits, such as virulence and drug resistance, leading to the emergence of strains that cause high mortality and/or evade treatment. Overall, these changes to the dynamics of infectious disease in coastal seas impose new constraints on the sustainability of both wild and farmed fish.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Delayed maturity does not offset negative impact afflicted by ectoparasitism in salmon

    No full text
    The negative effects of parasitism on host population dynamics may be mediated by plastic compensatory life-history changes in hosts. Theory predicts that hosts should shift their life-history towards early reproduction in response to virulent pathogens to maximize reproduction before death. However, for sublethal infections that affect growth, hosts whose fecundity is correlated with body size are predicted to shift towards delayed reproduction associated with larger body size and higher fecundity. This has been observed in Atlantic salmon and parasitic sea lice, via mark-recapture studies that recover mature fish from paired groups of control and parasiticide-treated smolts. We investigated whether such louse-induced changes to age at maturity can offset some of the negative effect of mortality on population growth rate in salmon using a structured population matrix model. Model results show that delayed maturity can partially compensate for reduced survival. However, this only occurs when marine survival is moderate to poor and growth conditions at sea are good. Also, the impact of delayed maturity on population growth when parameterizing the model with empirical data is negligible compared with effects of direct mortality. Our model thus suggests that management that works on minimizing the effect of sea lice from fish farms on wild salmon should focus mainly on correctly quantifying the effect of parasite-induced mortality during the smolt stage if the goal is to maximize population growth rate
    • …
    corecore