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ABSTRACT 

Parasites may have large effects on host population dynamics, marine fisheries, and 

conservation but a clear elucidation of their impact is limited by a lack of ecosystem-scale 

experimental data. We conducted a meta-analysis of replicated manipulative field 

experiments concerning the influence of parasitism by crustaceans on the marine survival of 

Atlantic salmon (Salmo salar L.).  The data include 24 trials in which tagged smolts (totaling 

283,347 fish; 1996-2008) were released as paired control and parasiticide-treated groups into 

10 areas of Ireland and Norway. All experimental fish were infection-free when released into 

freshwater, and a proportion of each group was recovered as adult recruits returning to 

coastal waters one or more years later. Treatment had a significant positive effect on survival 

to recruitment, with an overall effect size (odds ratio) of 1.29 that corresponds to an estimated 

loss of 39% (95% CI: 18% to 55%) of adult salmon recruitment. The parasitic crustaceans 

were likely acquired during early marine migration in areas that host large aquaculture 

populations of domesticated salmon, which elevate local abundances of ectoparasitic 

copepods – particularly Lepeophtheirus salmonis. These results provide experimental 

evidence from a large marine ecosystem that parasites can have large impacts on fish 

recruitment, fisheries, and conservation. 
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1. INTRODUCTION 

Infectious diseases may threaten biodiversity conservation and food security [1,2].  

Conceptually, a number of disease-associated mechanisms may elevate extinction risk, which 

include small pre-epidemic population size and the presence of a reservoir host population [3]. 

Furthermore, evolutionary similarity to domesticated animals may be a key factor associated 

with parasite-mediated population declines of wildlife [4]. For food security, disease threats 

to domesticated populations are associated with increased host density or emergence of novel 

pathogen strains [1,5]. More broadly, parasites are increasingly being recognized for their 

direct and indirect effects on host population dynamics and community structure [6-10].  

 However, clear experimental demonstrations of parasites regulating or limiting host 

population dynamics in field conditions are rare [11,12]. For marine fishes, uncertainty may 

be particularly high because fish recruitment is highly stochastic and non-linear [13,14], and 

analyses of recruitment are correlative with correlates often being ephemeral [15]. 

Nevertheless, there is a growing perception of the potential regulatory importance of parasites 

in marine fish populations [16-19]. Furthermore, parasites that are shared between wild 

marine fish populations and evolutionarily similar domesticated stocks in aquaculture may 

affect fish population dynamics, fisheries productivity, biodiversity conservation, and 

aquaculture productivity [5,20,21]. 

In coastal seas, domesticated populations in aquaculture are rapidly growing and these 

experience both incidental and persistent disease outbreaks [22-24].  Although disease and its 

control are costly for aquaculture producers, concerns also have emerged on the potential 

wider consequences for marine ecosystems and wild fisheries [20,21,25,26].  Perhaps 

nowhere is this more contentious than with Pacific (Oncorhynchus spp.) and Atlantic salmon 

(Salmo salar L.) and their native, specialist ectoparasitic copepod, the salmon louse 

Lepeophtheirus salmonis (Krøyer) [27-29].  In the North Atlantic, stocks of wild S. salar 
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show a marked and steady decline of ~45% since the 1980s, with variability among stocks 

[30], and correlations to salmon aquaculture have been drawn [31,32]. 

 Lepeophtheirus salmonis is a marine ectoparasitic copepod of salmonids (Salmo spp., 

Salvelinus spp., Oncorhynchus spp.) that feeds on host surface tissues causing morbidity and 

mortality [27,28]. There is no intermediate host and the parasitic gravid female releases free-

living larvae to the water column where they can be dispersed among wild and farmed 

populations [5,33]. L. salmonis is extremely unusual amongst macroparasites [34,35] in 

typically reaching 100% prevalence on wild one sea-winter (1SW) and two sea-winter (2SW) 

Atlantic salmon [36,37].  Persistent re-infestation of wild salmon at sea is apparent from the 

significantly higher mean abundance of L. salmonis on wild 2SW fish compared to 1SW 

adults [37].  Thus, L. salmonis must be viewed either as being exceptionally well adapted in 

locating the host fish or, more likely, the behaviour of salmon is such that they inevitably 

encounter the infective copepodid stage of L. salmonis both in coastal waters and in the open 

Atlantic ocean. 

Numerous studies have associated salmon farming and sea louse infestations of wild 

juvenile salmon, but the impact on salmon recruitment remains contentious [20,38-44].  A 

primary reason is that many studies are correlative and results depend on modeling 

assumptions [32,38,39].  By contrast, manipulative field experiments provide an opportunity 

for strong inferences based on differential survival between paired releases of control and 

parasiticide-treated groups of emigrant juvenile salmon smolts [40,42,45,46].  The 

parasiticides affect crustaceans, which include other native salmon parasites, particularly 

Caligus elongatus, though L. salmonis remains the focus due to its prevalence and adverse 

lethal and sub-lethal effects [27,28].  Some of the field experiments have identified 

significant impacts on salmon survival [42,45] whereas others have claimed no significant 

effect at the population level [40,46].  
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We assembled and analyzed all the published results of large-scale, pair-wise field 

experiments of the marine survival of Atlantic salmon in the Northeast Atlantic Ocean. These 

studies were conducted in Ireland and Norway, and typically occurred in river systems 

discharging to near-shore marine waters that accommodated salmon farms in [40,42,45-47].  

Figure 1 shows the location of coastal salmon farm sites adjacent to the named experimental 

release rivers in Norway and Ireland; however, not all farm sites were in active production in 

all years of experimental releases. The published studies all were substantial, involving the 

release of thousands of hatchery-raised juvenile salmon smolts into rivers.  Prior to release, 

all fish were tagged (either coded wire or carlin tags) and approximately half the juveniles 

received a parasiticide treatment while the others were untreated controls.  Targeted tag 

recovery programs and screening of commercial catches of return adult spawners allowed 

comparisons of marine survival between treatment and control groups. The large majority of 

the recovered fish spent one year at sea, and we focus on these so-called one sea-winter 

(1SW) fish in the main analysis. Further details, including comparative analyses of return 

adults of all sea ages (1SW, 2SW, and 3SW), and the data analyzed, are presented in the 

electronic supplementary material (ESM). 

 

2. MATERIALS AND METHODS 

(a) Data sources 

The data spanned 24 trials between 1996 and 2008, and included a total of 283,347 smolts 

released into 10 rivers mostly in Ireland but also Norway (figure 1, table 1, and ESM).  Most 

trials involved a single release of paired control-treatment groups into a river (or estuary [47]) 

during the spring emigration (typically April-May). In some trials there were multiple 

separate releases within an emigration season: for these, we summed the data across the 

multiple releases into a single observation for that annual trial.  In 21 of 24 trials the in-feed 
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treatment emamectin benzoate (Slice™; Schering-Plough) was applied; this is a widely used 

parasiticide in salmon aquaculture [48].  For three trials, a different proprietary compound, 

Substance Ex (Alpharma), was used [47] (Table 1), which involves a topical bath treatment.  

 

(b) Analytical approaches 

We considered three independent but complementary analyses based on odds ratios, paired 

sample t-tests, and mixed effects models, each of which synthesize the data across studies to 

quantitatively assess sea louse-induced mortality of Atlantic salmon. The first approach is a 

standard survival analysis that leads to estimates of the odds ratio in survival between 

control-treatment data pairs, as well as an overall meta-analytic mean odds ratio [49].  The 

second analysis begins with the standard assumptions of survival analysis, and leads to a 

simple paired-sample t-test of survival estimates on a natural log scale. A key advantage of 

this approach is that it permits an estimation of the percent of adult salmon recruitment that is 

lost to parasites. The third analytical approach also begins with the standard assumptions of 

survival analysis but, relative to the second approach, differs subtly in how residual variation 

is distributed between control and treatment groups. This third approach leads to a mixed-

effects model of survival estimates, again on a log scale, and also permits estimation of the 

percent of salmon recruitment lost to parasites.  

Our initial standard meta-analysis is an approach which often is adopted when 

seeking to estimate the overall effect associated with a range of trials that report the same 

outcome variable. Because the outcomes were dichotomous an appropriate measure of 

association was the odds ratio.  Given the degree of heterogeneity evident among the studies, 

a random effects meta-analysis [49] was adopted.  The meta.DSL function from the rmeta 

package of the R statistical software was used to carry out the analysis. 
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The second and third approaches begin with a standard survival analysis where the 

probability of survival from time t=0 to time t=T is 

(1)  

and  is known variously as the instantaneous mortality rate, hazard rate, or force of 

mortality [50]. 

The second analytical approach involves a model of the data according to 

(2)  

where sC,i and sP,i are the proportions of fish that were recovered from the control group (C) 

and parasiticide treatment group (P) in trial i.  The parameters C and P are the instantaneous 

mortality rates of Atlantic salmon from control (C) and parasiticide treatment (P) groups.  

The mortality rate then is integrated over the duration of the study from the time of release 

(t=0) to the average time of recapture (t=T).  Variation in mortality rates among trials (but not 

between control and treatment groups within trials) is modeled as the normally distributed 

random variable, i with a mean of zero; thus the treatment and control groups in the same 

release share the same environmental variability in mortality rate.  The parameter i also 

encompasses random variation in T among trials, but we assume that T does not vary between 

control and treatment groups within trials.  The parameter C,i is a normally distributed 

random variable with a mean of zero that models random variation among trials in parasite 

exposure in control groups.  The parameter P,i is a normally distributed random variable with 

a mean of zero that models random variation among trials in the level of protection conferred 

by parasiticide treatment. 

Equations (2) can be simplified to  
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(3)  

where 

(4) . 

Equations (4) lead to an estimate of the average mortality due to parasites  

(5)  

where =C-P.  It follows that can therefore be estimated as 

(6) 
,
 

where i = P,i-C,i is a random normal variable with mean of zero and variance to be 

estimated.  Equation (6) indicates that statistical inference on , and therefore parasite-

induced mortality of Atlantic salmon, can be conducted as a simple paired-sample t-test 

between paired survival estimates of control and treatment groups among trials on a natural 

log scale. 

The third model of the data we consider is 

(7)  

where j represents control (C) or parasiticide treatment (P) groups.  Equation (7) is similar to 

equations (2), except that i,j is a normally distributed random variable that is distributed over 

control and treatment groups across the dataset.  Here, it is assumed that mortality rates for 

each individual group – be it control or treatment – vary among each other according to a 

single random variable, whereas in equations (2) variation in mortality rate among trials 

within treatment or control groups was modeled separately for control and parasiticide 

treatment groups.  

ln(sC,i ) = b C + q i + e C,i

ln(sP,i ) = b P + q i + e P,i
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This third approach leads to a model for the log-transformed survival data 

(8)  , 

which has the form of a mixed-effects model where i is a random effect for shared 

environmental variability for control and treatment groups within trials and i,j is the residual 

variation.  Here, statistical inference on whether parasiticide treatment has a significant effect 

on survival can be conducted by means of a likelihood ratio test between model (8) and its 

null version where j is constant (j= 0).  Estimation of , and therefore parasite-induced 

mortality (M) as defined above, can be conducted from the maximum likelihood estimate of 

the difference (and associated standard error) between the treatment and control fixed effects 

in the mixed model (equation 8). 

 

3. RESULTS 

Meta-analysis of differential survival between control and parasiticide-treatment groups 

indicated a consistent directionality of the effect of treatment among trials, albeit with 

variation among trials in effect size, and a significant protective effect of treatment (overall 

odds ratio 1.29 with 95% CI 1.18 to 1.42; figure 2). The paired sample t-test revealed 

significant differences in survival between treatment and control groups (t = 3.37, df = 23, p-

value = 0.003).  Similarly for our third (mixed model) analytical approach, treatment had a 

significant effect on survival (Likelihood ratio test; 2 = 9.64, df = 1, p = 0.002).  The 

estimated difference in log survival between paired treatment and control groups was  = 

0.50 from both the latter analyses. Uncertainty in  was given by 95% confidence intervals of 

0.19 to 0.80 in the paired sample t-test, and a range of two standard errors giving the interval 

0.20 to 0.79 in the mixed model.  These estimates of  correspond to parasite-associated 

mortality of 1SW Atlantic salmon of M = 1-exp[-] = 39.3% (95% CI from paired sample t-

test, 17.5% to 55.3%; range of two standard errors from mixed model, 18.3% to 54.8%).  The 

ln(si, j ) = b j + q i + e i, j
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complementary analysis (ESM) that included all sea ages (1-3SW) of returning adults gave a 

final estimate of M = 39.9%. 

 

4. DISCUSSION 

These results provide manipulative experimental evidence at a large spatial scale from the 

marine environment that parasitism is a significant limiting factor for the recruitment of 

Atlantic salmon. Treatment of smolts with parasiticide significantly improved their survival 

to adulthood relative to control untreated groups. The most common treatment in the trials, 

emamectin benzoate, has a half-elimination period of 9-12 days in Atlantic salmon smolts 

[51] and is effective for up to the first 1-2 months at sea [48].  The differential survival 

between control and treatment groups is therefore attributable to near-shore and coastal 

waters where the juvenile post-smolts transit from rivers to offshore waters.  These near-

shore waters typically host large domesticated salmon populations in aquaculture operations 

(figure 1), which represent a large – but not exclusive – source of sea lice. Potential wild 

sources of sea lice include sea trout (Salmo trutta L.), Arctic char (Salvelinus alpinus L.), and 

spring-returning adult S. salar [27].  

Though we focus attention on L. salmonis, in view of its prevalence and known 

adverse effects on host salmon, it is likely that C. elongatus, which also is native and occurs 

both on wild and farmed salmon [27], contributes to mortality.  In addition, it is not 

implausible that there may be other unknown effects of the treatments that improve survival.  

Another caveat is that the data are based on hatchery-reared smolts, which, among other 

differences with wild smolts, are larger: hatchery smolts are typically 18-19 cm whereas wild 

smolts are typically 11-14 cm in Ireland and Norway.  The larger size of hatchery smolts can 

partially offset their typically low marine survivorship compared to wild smolts [52].  

Nonetheless, due to the size-related effects of sea louse-induced stress on smolts [27,28], 
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wild salmon would likely experience higher mortality than we have estimated here for 

hatchery smolts. 

We considered the possibility of a dose-dependent effect – i.e. including sea louse 

abundance on farms as a covariate – but proceeded otherwise.  It was not possible to formally 

structure the analysis in this way because we lack sufficient farm data for all areas and years.  

Furthermore, local hydrodynamic processes that disperse the infective sea louse larval stage 

will be highly variable among locations [33,53], making it difficult to construct a covariate 

that is geographically comparable. Rather, we regard the variance in the data of differential 

survival as representative of the spatio-temporal variation of ectoparasite exposure that wild 

salmon experience in salmon-farming regions of the Northeast Atlantic.  

 While it is apparent that parasites have potential to be a significant source of mortality 

in wild fish populations [10,16,54], it is difficult to measure marine mortality associated with 

disease, and furthermore to evaluate whether such mortality scales up to a limiting or 

regulating factor of recruitment. Disease-associated mortality of fish in the marine 

environment often goes undetected or is observed sporadically, and parasite-induced 

mortality may be compensatory, for example due to predation [55]. Some examples include 

parasite-associated mortality of juvenile coho salmon (Oncorhynchus kisutch) with 

infestations of the digenean trematode Apophallus sp [56], mortality of European eels 

(Anguilla anguilla) infested with the nematode Anguillicoloides (=Anguillicola) crassus [57], 

and mortality of juvenile Pacific salmon (Oncorhynchus spp.) due to the trematode 

Nonophyetus salmincola [58].  

However, none of the above example studies of parasite-related mortality have been 

able to establish if parasitism is linked with declines in host fish recruitment, or is otherwise 

offset by compensatory mechanisms. From meta-analysis of taxonomically diverse field- and 

laboratory-based experimental studies, parasitized hosts tend to be ~2.6 times more likely to 
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die compared to control groups, and that odds ratio is likely to be higher for fishes [10]. It has 

to be acknowledged, however, that variation in the odds ratio of host mortality is influenced 

both by taxon and latitude, and differs for (direct) parasite-associated effects and (indirect) 

predation-mediated influences of parasites on host survivorship [10]. Our analysis for one 

species of fish yielded a meta-analytic mean odds ratio of 1.29 (95% CI 1.18 to 1.42), which 

is relatively low compared to reported values [10], and yet which still implies a high 

proportion (39%) of host mortality attributable to a specialist ectoparasite.  

            In contrast to the foregoing [56-58], our analysis of experimental manipulations of 

emigrant Atlantic salmon smolts permitted an explicit, though indirect, quantitative test of the 

significance of host mortality attributable to a specialist ectoparasite.  All experimental fish 

were known to be free of L. salmonis infection at the start of the experiment because the 

parasite is acquired only following seawater entry by the emigrant smolt.  Fish in the control 

and treated groups all were identifiable by tags, and surviving adults which successfully 

completed the return marine migration in subsequent years could be recaptured because of 

the fidelity of salmon to their natal (or experimental release) river.  Moreover, both the 

prophylactic experimental treatments applied have specific effects in controlling arthropod 

ectoparasites and emamectin benzoate is widely used in the aquaculture industry specifically 

to control L. salmonis infestations on cultured salmon.   

The three analytical approaches we used reveal a key insight into interpreting the 

results of salmon and sea lice studies that formed the basis of our meta-analysis. While the 

assembled data indicate a clear consistency in direction of parasiticide effects on survival, the 

magnitude of the odds-ratio is relatively small. This is due to the very high marine mortality 

that naturally affects both control and treatment groups. This, perhaps, underlies the 

conclusions of some studies that the effect is biologically insignificant relative to the overall 

mortality within a salmon lifecycle [40,46]. However, our analyses based on paired sample t-
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tests and mixed effects models allowed us to account for the high natural mortality and 

isolate the estimated loss of recruitment due to parasitism, revealing a large effect of parasites. 

Precisely because natural mortality rates are high, even a proportionally small additive 

mortality from parasites can amount to a large loss in salmon recruitment. 

It is rare to identify and quantify the factors that affect population dynamics of marine 

fishes [15] as well as the role of infectious disease in conservation [59]. Our results indicate 

that parasite-associated mortality may cause the closure of some fisheries when conservation 

targets of return adult abundances are not being met.  However, the implications of our 

results may be most acute for small populations in small river systems.  Due largely to the 

fidelity to their natal rivers, populations of Atlantic salmon typically show substantial genetic 

structuring and variability that is considered adaptive [60].  Small river systems that support 

salmon populations of low effective population size [61] will be especially vulnerable.  The 

concern therefore is not only for a 39% loss in salmon abundance, but also the loss of genetic 

variability and its associated potential for adaptation to other environmental changes. More 

broadly, and in contrast to the conclusions from two of the original studies [40,46], our 

results supply manipulative field experimental evidence at a large spatial scale that parasitism 

may be a significant limiting factor for marine fish, fisheries, and conservation.  
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Table 1. Summary of the data, giving the year, country, and river of release as well as the 
numbers of smolts released (N) and of one sea-winter (1SW) adults recovered (R) for 
treatment groups receiving parasiticides (t) and controls (c).  Also shown are the total number 
of smolts released (Ntotal) and sources of the data (Ref), those studies with multiple within-
season releases that were grouped (*), and the studies that used the proprietary Substance Ex 
as treatment (¶) rather than emamectin benzoate.  Note that numbers of recaptured salmon for 

Refs [40] and [46] are their survival estimates that incorporated raising factors applied to the 
raw data (tags recovered), and may therefore be inflated relative to the other data. 
 

Year Country River Nt Rt Nc Rc Ntotal Ref 

1996 Norway Agdenes 3000 53 2985 43 5985 [47]¶
 

1997 Norway Agdenes 2935 16 2936 12 5871 [47]¶
 

1998 Norway Agdenes 2966 37 2977 14 5943 [47]¶
 

2002 Norway Dale 5086 56 4859 40 9945 [45]* 

2004 Ireland Erriff 4325 44 4229 34 8554 [42] 

2005 Ireland Erriff 4659 37 4689 2 9348 [42] 

2003 Ireland Invermore 4589 17 4594 9 9183 [42] 

2004 Ireland Invermore 4653 37 4671 26 9324 [42] 

2005 Ireland Invermore 4716 31 4750 17 9466 [42] 

2003 Ireland Owengowla 4955 35 4822 3 9777 [42] 

2004 Ireland Owengowla 4655 51 4699 22 9354 [42] 

2005 Ireland Owengowla 4583 54 4735 53 9318 [42] 

2001 Ireland Burrishoole 5496 565 10039 992 15535 [40]  

2002 Ireland Burrishoole 5960 544 5989 545 11949 [40]  

2003 Ireland Burrishoole 4755 472 4587 374 9342 [40]  

2004 Ireland Burrishoole 4437 402 4369 398 8806 [40]  

2005 Ireland Burrishoole 3793 253 3867 182 7660 [40]  

2006 Ireland Burrishoole 8716 508 12779 549 21495 [40] * 

2007 Ireland Burrishoole 6746 492 6795 435 13541 [40]  

2008 Ireland Burrishoole 10132 163 10224 125 20356 [40] * 

2001 Ireland Bundorragha 12787 2056 12753 1873 25540 [46] * 

2006 Ireland Erne 5752 70 10357 68 16109 [46]  

2006 Ireland Lee 5207 10 5131 10 10338 [46]  

2006 Ireland Screebe 10990 157 9618 121 20608 [46]  
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Figure 1 

 

 

 

Figure 1. Map of the study regions showing rivers where salmon smolts were released and 
salmon farm locations (black circles). Interpretation of farming activities over the course of 
the study period should be made with caution because the distributions of farms, stocking 
levels, parasite levels, and management approaches have varied over the years. 
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Figure 2 

 

 

Figure 2. Forest plot displaying a random-effects meta-analysis of the effect of treatment on 
the likelihood of a one sea winter (1SW) adult salmon returning. Horizontal lines represent 
the 95% confidence intervals of the effect size in each trial, and the relative sizes of solid 
squares reflect the percentage weighting (based on standard errors of effect sizes) of each 
trial in the meta-analysis (range 0.42 - 8.12%).  The open diamond shows the overall meta-
analytic effect across all studies, with its width corresponding to the 95% confidence interval. 
Results are given by trial, identified by Location (country and river of release of smolts), 
Year (year when smolts were released), and Ref (the reference where the data were 
published). 
 

 

                                                                 Odds Ratio (1SW fish)

1.00 3.16 10.00 31.62 100.00

Norway
Norway
Norway
Norway

Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland

Agdenes
Agdenes
Agdenes

Dale
Erriff
Erriff
Invermore
Invermore
Invermore
Owengowla
Owengowla
Owengowla

Burrishoole
Burrishoole
Burrishoole
Burrishoole
Burrishoole
Burrishoole
Burrishoole
Burrishoole
Bundorragha

Erne
Lee
Screebe

1996
1997
1998
2002
2004
2005
2003
2004
2005
2003
2004
2005
2001
2002
2003
2004
2005
2006
2007
2008
2001
2006
2006
2006

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

47
47
47
45
42
42
42
42
42
42
42
42
46
46
46
46
46
46
46
46
40
40
40
40

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

  
  

  
  

 T
ri
a

l

Summary

Location Year Ref



 21 

Electronic Supplementary Material 

The present analyses focused on all the available published literature pertaining to control 

and parasiticide-treated experimental releases of Atlantic salmon smolts. The process by 

which the data were identified was mainly by our knowledge of their existence – some co-

authors were directly involved in the original studies and it is a relatively small research 

community. However, we also checked on the ISI Web of Science that we did not miss any 

studies by searching under the keyword “salmon AND lice”, which produced 789 records 

from which we searched separately for the following further keywords: “tag” and “release”.  

The publications providing the original data are listed in table 1.  In all instances, with the 

exception of Refs [40] and [46], we included in our analyses the raw counts of control and 

treatment (parasiticide) tags retrieved from return adult migrant salmon.  Refs [40] and [46] 

provide only the numbers of smolts released at each trial and the "raised" numbers, and 

estimated percent marine survival, of recaptured fish.  Ideally, we would have included the 

raw tag counts from the trials in Refs [40] and [46] but the authors declined to provide those 

numbers, or the "raising factors" applied in deriving the percent estimates of marine survival.  

Multiple raising factors were applied to the tags retrieved in Refs [40] and [46], depending 

upon the source of tag retrieval.  Thus, for example, in monitoring tags from commercial 

landings in the six Irish coastal fishery areas, the raising factor applied to a specific tag was 

dependent upon the proportion of an area's catch sampled and the frequency with which those 

catches were inspected by fishery scientists.  As detailed in Ref [42], in order to estimate 

percent marine survivorship, the total number of tagged salmon actually taken in these 

various net fisheries would have been derived by multiplying the number of tagged 

salmon caught in each area by the ratio of the total declared salmon catch to sample size.  

It would therefore have been necessary to apply a different raising factor for each area 

because of the different proportions of the catch examined.  In the absence of the specific 

raising factors applied to each tag retrieved for Refs [40] and [46] we make the assumption 

that each control-treatment data pairing received the same adjustments, and therefore the 

scaling factor is not needed for present purposes. From inspection of the numbers of smolts 

released across all experiments (table 1, table S1), and their reported range of percent marine 

survival [40, 46], there is no reason to suspect that the numbers of tags retrieved in Refs [40] 

and [46] will exert undue influence on the overall meta-analytical results presented here.  

Moreover, because we are interested in the difference in log survival between paired control-

treatment groups, , the unknown scaling factors applied in Refs [40] and [46] have no 
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effect: if Z is the scaling factor, Nt and Nc are the number of treatment and control smolts 

released, and Rt and Rc are number of treatment and control adult recoveries, then an 

observation of  is ln(ZRt/Nt) – ln(ZRc/Nc) = ln(Z) – ln(Z) + ln(Rt/Nt) – ln(Rc/Nc)  = ln(Rt/Nt) – 

ln(Rc/Nc). 

 Ref. [42] presented and analyzed only the numbers of adults returning after one 

winter at sea – so-called one sea-winter (1SW) adults.  A small number of the juveniles 

tagged in these trials in Ireland returned two years after release as 2SW adults.  In the 

analyses of the main text, we used only 1SW fish. Refs [40] and [46] provided no 

information on the sea ages of retrieved adult salmon, but the fish released into the 

Burrishoole system [40] all were of a line-bred grilse (= 1SW) strain so the presumption is 

made that all return adults were 1SW fish.  We make the same presumption for the fish 

released to the Rivers Erne, Lee and Screebe [46]. With specific reference to the trials in 

Ireland [40,42,46], it is relevant to note that the west coast Ireland commercial drift net 

fishery for wild salmon was closed after summer 2006.  Scientific monitoring of catches 

landed from this fishery provided a large number of tag returns for these experiments.  For all 

of the trials in Ref [42], which involved juvenile releases in 2003, 2004 and 2005, all return 

1SW adults (and tags) were available to be sampled by that fishery in a comparable manner 

over the time series.  For the releases documented in [40] and [46], and which occurred from 

spring 2006 onwards, this fishery source of tag retrieval was no longer available and this may 

have implications for low estimates of marine survival from the retrieved tag numbers.   

Table S1 shows the numbers of control and treatment smolts released and the tags 

successfully retrieved from all returning adults, of varying sea ages, which we also analyzed 

and report in the results presented below.  Just as for the Irish recaptures, the return adults 

recorded from the Norwegian releases [45,47] included primarily 1SW adults, but also there 

were some numbers both of 2SW and even 3SW return adults.  Again, in the analyses 

reported in the main text, only 1SW fish were included in the analysis.  Ref [47] included 526 

smolts (276 treated, 250 control) in the total of 10,471 fish released in their summed trial, and 

that were precociously mature male parr which had undergone smoltification.  Of these 526 

fish, 6 treated and 3 control tags were retrieved, and these were included in the analyses 

reported in this ESM below. Exclusion of the precociously mature male parr from the data in 

Table S1 yielded almost identical results to those reported below.  

To ascertain the robustness of the results, we also analyzed the data for fish of all sea 

ages at recovery (including precociously mature male parr in ref [47] and the data from Refs 
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[40] and [46] as originally reported in their paper; table S1). Meta-analysis of odds ratios 

(figure S1) indicated very similar results to those reported in the main text. Analysis with a 

paired sample t-test revealed significant differences in survival between treatment and control 

groups (t = 3.40, df = 23, p-value = 0.002).  Similarly for the mixed model, treatment had a 

significant effect on survival (Likelihood ratio test; 2 = 9.80, df = 1, p = 0.002).  The 

estimated difference in log survival between paired treatment and control groups was  = 

0.51 from both analyses – that is, for the mixed models analyzing 1SW fish only and for fish 

of pooled sea ages.  Uncertainty in  was given by 95% confidence intervals of 0.20 to 0.82 

in the paired sample t-test, and a range of two standard errors of 0.21 to 0.81 in the mixed 

model.  These estimates of  correspond to parasite-associated mortality of Atlantic salmon 

of M = 39.9% (95% CI from paired sample t-test, 18.1% to 55.9%; range of two standard 

errors from mixed model, 18.9% to 55.4%). 
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Table S1. Summary of the data, giving the year, country, and river of release as well as the 

numbers of smolts released (N) and adults of all sea-ages (1SW-3SW incl.) that were 

recovered (R) for treatment groups receiving parasiticides (t) and controls (c).  Also shown 

are sources of the data (Ref), studies with multiple within-season releases that were grouped 

(*), and studies that used the proprietary Substance Ex as treatment (¶) rather than emamectin 

benzoate.  Note that recaptured salmon for Refs [40] and [46] are of un-reported sea age and 

numbers here are derived from their survival estimates that applied raising factors to the raw 

data (tags recovered): these numbers may therefore be inflated relative to the other data 

sources. 

 
 
 

Year Country River Nt Rt Nc Rc Ref 

1996 Norway Agdenes 3000 66 2985 51 [47]¶
 

1997 Norway Agdenes 2935 20 2936 15 [47]¶
 

1998 Norway Agdenes 2966 42 2977 17 [47]¶
 

2002 Norway Dale 5362 93 5109 53 [45]* 

2004 Ireland Erriff 4325 49 4229 34 [42] 

2005 Ireland Erriff 4659 38 4689 2 [42] 

2003 Ireland Invermore 4589 19 4594 11 [42] 

2004 Ireland Invermore 4653 37 4671 27 [42] 

2005 Ireland Invermore 4716 33 4750 17 [42] 

2003 Ireland Owengowla 4955 38 4822 3 [42] 

2004 Ireland Owengowla 4655 51 4699 24 [42] 

2005 Ireland Owengowla 4583 55 4735 55 [42] 

2001 Ireland Burrishoole 5496 565 10039 992 [40]  

2002 Ireland Burrishoole 5960 544 5989 545 [40]  

2003 Ireland Burrishoole 4755 472 4587 374 [40]  

2004 Ireland Burrishoole 4437 402 4369 398 [40]  

2005 Ireland Burrishoole 3793 253 3867 182 [40]  

2006 Ireland Burrishoole 8716 508 12779 549 [40]* 

2007 Ireland Burrishoole 6746 492 6795 435 [40]  

2008 Ireland Burrishoole 10132 163 10224 125 [40]* 

2001 Ireland Bundorragha 12787 2056 12753 1873 [46]* 

2006 Ireland Erne 5752 70 10357 68 [46]  

2006 Ireland Lee 5207 10 5131 10 [46]  

2006 Ireland Screebe 10990 157 9618 121 [46]  
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Fig S1. Forest plot displaying a random-effects meta-analysis of the effect of treatment on the 

likelihood of all sea ages (1SW-3SW incl.) of adult salmon returning.  Horizontal lines 

represent the 95% confidence intervals of the effect size in each trial and the relative sizes of 

solid squares reflect the percentage weighting (based on standard errors of effect sizes) of 

each trial in the meta-analysis (range 0.42 - 8.12%).  The diamond at the bottom represents 

the effect across all studies, with its width corresponding to the meta-analytic 95% 

confidence interval on the overall effect size.  Results are given by trial, identified by 

Location (country and river of release of smolts), Year (year when smolts were released), and 

Ref (the reference where the data were published). 
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