13 research outputs found

    Multiple hybridization events in Cardamine (Brassicaceae) during the last 150 years: revisiting a textbook example of neoallopolyploidy

    Get PDF
    Background and Aims Recently formed allopolyploid species represent excellent subjects for exploring early stages of polyploid evolution. The hexaploid Cardamine schulzii was regarded as one of the few nascent allopolyploid species formed within the past ∼150 years that presumably arose by autopolyploidization of a triploid hybrid, C. × insueta; however, the most recent investigations have shown that it is a trigenomic hybrid. The aims of this study were to explore the efficiency of progenitor-specific microsatellite markers in detecting the hybrid origins and genome composition of these two allopolyploids, to estimate the frequency of polyploid formation events, and to outline their evolutionary potential for long-term persistence and speciation. Methods Flow-cytometric ploidy-level screening and genotyping by progenitor-specific microsatellite markers (20 microsatellite loci) were carried out on samples focused on hybridizing populations at Urnerboden, Switzerland, but also including comparative material of the parental species from other sites in the Alps and more distant areas. Key Results It was confirmed that hybridization between the diploids C. amara and C. rivularis auct. gave rise to triploid C. × insueta, and it is inferred that this has occurred repeatedly. Evidence is provided that C. schulzii comprises three parental genomes and supports its origin from hybridization events between C. × insueta and the locally co-occurring hypotetraploid C. pratensis, leading to two cytotypes of C. schulzii: hypopentaploid and hypohexaploid. Each cytotype of C. schulzii is genetically uniform, suggesting their single origins. Conclusions Persistence of C. schulzii has presumably been achieved only by perennial growth and clonal reproduction. This contrasts with C. × insueta, in which multiple origins and occasional sexual reproduction have generated sufficient genetic variation for long-term survival and evolutionary success. This study illustrates a complex case of recurrent hybridization and polyploidization events, and highlights the role of triploids that promoted the origin of trigenomic hybrid

    Comparison of Inflammatory Response to Transgastric and Transcolonic NOTES

    Get PDF
    Aims. The aim of our study was to determine the physiologic impact of NOTES and to compare the transgastric and transcolonic approaches. Methods. Thirty pigs were randomized to transgastric, transcolonic, or laparoscopic peritoneoscopy. Blood was drawn and analyzed for C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin- (IL-) 1β, IL-6, WBCs, and platelets. Results. Endoscopic closure with an OTSC was successful in all 20 animals. The postoperative course was uneventful in all animals. CRP values rose on day 1 in all animals and slowly declined to baseline levels on day 14 with no differences between the groups (P>0.05, NS). The levels of TNF-α were significantly increased in the transcolonic group (P<0.01); however this difference was already present prior to the procedure and remained unchanged. No differences were observed in IL1-β and IL-6 values. There was a temporary rise of WBC on day 1 and of platelets on day 7 in all groups (P>0.05, NS). Conclusions. Transgastric, transcolonic, and laparoscopic peritoneoscopy resulted in similar changes in systemic inflammatory markers. Our findings do not support the assumption that NOTES is less invasive than laparoscopy

    Evolutionary dynamics of emblematic Araucaria species (Araucariaceae) in New Caledonia:Nuclear and chloroplast markers suggest recent diversification, introgression, and a tight link between genetics and geography within species

    Get PDF
    BACKGROUND: New Caledonia harbours a highly diverse and endemic flora, and 13 (out of the 19 worldwide) species of Araucaria are endemic to this territory. Their phylogenetic relationships remain largely unresolved. Using nuclear microsatellites and chloroplast DNA sequencing, we focused on five closely related Araucaria species to investigate among-species relationships and the distribution of within-species genetic diversity across New Caledonia. RESULTS: The species could be clearly distinguished here, except A. montana and A. laubenfelsii that were not differentiated and, at most, form a genetic cline. Given their apparent morphological and ecological similarity, we suggested that these two species may be considered as a single evolutionary unit. We observed cases of nuclear admixture and incongruence between nuclear and chloroplast data, probably explained by introgression and shared ancestral polymorphism. Ancient hybridization was evidenced between A. biramulata and A. laubenfelsii in Mt Do, and is strongly suspected between A. biramulata and A. rulei in Mt Tonta. In both cases, extensive asymmetrical backcrossing eliminated the influence of one parent in the nuclear DNA composition. Shared ancestral polymorphism was also observed for cpDNA, suggesting that species diverged recently, have large effective sizes and/or that cpDNA experienced slow rates of molecular evolution. Within-species genetic structure was pronounced, probably because of low gene flow and significant inbreeding, and appeared clearly influenced by geography. This may be due to survival in distinct refugia during Quaternary climatic oscillations. CONCLUSIONS: The study species probably diverged recently and/or are characterized by a slow rate of cpDNA sequence evolution, and introgression is strongly suspected. Within-species genetic structure is tightly linked with geography. We underline the conservation implications of our results, and highlight several perspectives. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-014-0171-6) contains supplementary material, which is available to authorized users

    Micromorphological and Anatomical Characteristics of the Genus Chrysophthalmum Schultz Bip. (Asteraceae) Growing in Turkey

    No full text
    The genus Chrysophthalmum (Asteraceae) is represented by five species in the world. Three species of this genus are naturally grown in Turkey. The species growing in Turkey are C. montanum (DC.) Boiss., C. dichotomum Boiss. and Heldr. and C. gueneri Aytac and Anderb. Except C. montanum; the other species are endemic for Turkey. In the present study, micromorphological and anatomical characteristics of these species by using light microscopy (LM) and scanning electronmicroscopy (SEM) have been comparatively presented for the first time. Themicromorphological studies are related to trichomes and cypsela. In anatomical studies, crosssections of the stem, and leaf have been examined. In addition, to show stomatal distribution and anatomy on adaxial and abaxial leaves, surface sections of the leaves have been taken and stomatal index calculated. The features of stems, leaves, trichomes and cypsela have been found to be significant to distinguish the species. Mesophyll structure, number of vascular bundles in midrib, presence or absence of sclerenchymatous fibers in leaf, trichome types, presence or absence of pappus in cypsela, presence or absence of hair on cypsela surface are important diagnostic characters. A diagnostic key based on combined leaf, trichome and cypsela characteristics of the Chrysophthalmum species has been given

    Multiple hybridization events in Cardamine (Brassicaceae) during the last 150 years: revisiting a textbook example of neoallopolyploidy

    Full text link
    Background and Aims: Recently formed allopolyploid species represent excellent subjects for exploring early stages of polyploid evolution. The hexaploid Cardamine schulzii was regarded as one of the few nascent allopolyploid species formed within the past ∼150 years that presumably arose by autopolyploidization of a triploid hybrid, C. × insueta; however, the most recent investigations have shown that it is a trigenomic hybrid. The aims of this study were to explore the efficiency of progenitor-specific microsatellite markers in detecting the hybrid origins and genome composition of these two allopolyploids, to estimate the frequency of polyploid formation events, and to outline their evolutionary potential for long-term persistence and speciation. Methods: Flow-cytometric ploidy-level screening and genotyping by progenitor-specific microsatellite markers (20 microsatellite loci) were carried out on samples focused on hybridizing populations at Urnerboden, Switzerland, but also including comparative material of the parental species from other sites in the Alps and more distant areas. Key Results: It was confirmed that hybridization between the diploids C. amara and C. rivularis auct. gave rise to triploid C. × insueta, and it is inferred that this has occurred repeatedly. Evidence is provided that C. schulzii comprises three parental genomes and supports its origin from hybridization events between C. × insueta and the locally co-occurring hypotetraploid C. pratensis, leading to two cytotypes of C. schulzii: hypopentaploid and hypohexaploid. Each cytotype of C. schulzii is genetically uniform, suggesting their single origins. Conclusions: Persistence of C. schulzii has presumably been achieved only by perennial growth and clonal reproduction. This contrasts with C. × insueta, in which multiple origins and occasional sexual reproduction have generated sufficient genetic variation for long-term survival and evolutionary success. This study illustrates a complex case of recurrent hybridization and polyploidization events, and highlights the role of triploids that promoted the origin of trigenomic hybrids
    corecore