249 research outputs found

    Polyterthiophenes incorporating 3,4-difluorothiophene units : application in organic field-effect transistors

    Get PDF
    Two terthiophenes bearing core fluorinated thienyl units have been synthesised as potential semiconductor materials for organic field-effect transistors. Polymerisation of these compounds has been achieved using conventional iron(III) chloride oxidative coupling methods and by electrochemical oxidation. Characterisation of the fluorinated materials has been achieved by absorption spectroscopy and cyclic voltammetry. A soluble hexyl-functionalised polymer (poly8b) was used in an OFET device; hole mobilities were measured up to 3 × 10−3 cm2 · V−1 · s−1, and the device had an on/off ratio of 105 and a turn-on voltage of +4 V

    A comparison of para, meta, and ortho-carborane centred non-fullerene acceptors for organic solar cells

    Get PDF
    [Abstract]: We report the first examples of carborane-containing non-fullerene acceptors (NFAs), and their use in organic photovoltaic (OPV) devices. NFAs employing an A–D–A′–D–A type design centred around a central electron withdrawing carborane unit (A′), using either para, meta, or ortho-carborane isomers are reported. We demonstrate that the nature of the isomer has a major impact on device performance, despite minor differences in optoelectronic and morphological properties, with the use of ortho-carborane resulting in the highest device efficiencies. We further show that end-group fluorination is an efficient strategy to modulate energy levels and improve device performance of such NFAs.Reino Unido. Physics Science Research Council; EP/V048686/1Reino Unido. Physics Science Research Council; EP/T028513/1Arabia Saudí. King Abdullah University of Science and Technology; OSR-2019-CRG8-409

    Influence of Backbone Curvature on the Organic Electrochemical Transistor Performance of Glycolated Donor–Acceptor Conjugated Polymers

    Get PDF
    [Abstract] Two new glycolated semiconducting polymers PgBT(F)2gT and PgBT(F)2gTT of differing backbone curvatures were designed and synthesised for application as p-type accumulation mode organic electrochemical transistor (OECT) materials. Both polymers demonstrated stable and reversible oxidation, accessible within the aqueous electrochemical window, to generate polaronic charge carriers. OECTs fabricated from PgBT(F)2gT featuring a curved backbone geometry attained a higher volumetric capacitance of 170 F cm−3. However, PgBT(F)2gTT with a linear backbone displayed overall superior OECT performance with a normalised peak transconductance of 3.00×104 mS cm−1, owing to its enhanced order, expediting the charge mobility to 0.931 cm2 V−1 s−1.Engineering and Physical Sciences Research Council; EP/T028513/1República de Corea. Ministry of Science, ICT and Future Planning; NRF-2017K1A1A2013153República de Corea. Ministry of Science, ICT and Future Planning; NRF-2021R1A2C1013015República de Corea. Ministry of Science, ICT and Future Planning; NRF-2018M3A7B4070988República de Corea. Ministry of Science, ICT and Future Planning; NRF-2020M3D1A1030660República de Corea. Ministry of Science, ICT and Future Planning; NRF-2020M1A2A208074

    Innate cation sensitivity in a semiconducting polymer

    Get PDF
    Water- gated organic thin film transistors (OTFTs) using the hole transporting semiconducting polymer, poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT), show an innate response of their threshold voltage to the addition of divalent metal cations to the gating water, without deliberately introducing an ion- sensitive component. A similar threshold response is shown for several divalent cations, but is absent for monovalent cations. Response is absent for transistors using the inorganic semiconductor ZnO, or the similar organic semiconductor poly(3-hexylthiophene) (rrP3HT), instead of PBTTT. We assign innate cation sensitivity to residues of the organometallic Pd(0) complex used as catalyst in PBTTT synthesis which bears strong resemblance to typical metal chelating agents. Organometallic Pd(0) residues are absent from ZnO, and also from rrP3HT which is polymerised with a different type of catalyst. However, when Pd(0) complex is deliberately added to rrP3HT casting solutions, resulting OTFTs also display threshold response to a divalent cation

    Synthesis and Characterization of Soluble Thiophene-Selenophene- and Tellurophene-Vinylene Copolymers

    Get PDF
    Organic electronic devices based on polymers received significant attention in the last decade, especially for organic photovoltaics (OPVs) and field-effect transistors (OFETs) despite their performances and stability clearly falling short of today's state-of-the-art crystalline silicon or copper indium germanium selenide (CIGS)-based devices. Flexibility in the manufacturing, light weight, lower fabrication cost, ease of integration into various devices, and large area coating are some of the major potential advantages of polymers over inorganic devices. 1 Among organic polymers, conjugated polymers attracted widespread attention for a wide range of applications. Thiophene-containing conjugated polymers, especially, poly(3-alkylthiophne) (P3AT) has been subjected to intensive research over last decade due to their excellent optical and electronic properties. 2 Moreover, poly(thienylenevinylene) (PTV) class of polymers displays high charge carrier mobilities in OFETs and promising performances in OPVs. 3 When a single solubilizing alkyl chain is included onto the PTV backbone, the resulting copolymer can be solution processed for optical devices. One simple strategy to manipulate the copolymer property is by changing the heteroatom of the thiophene from sulfur to other chalcogens, selenium or tellurium. 4 Theoretical calculations indicated that substitution with selenium or tellurium may reduce the optical band gap of the resulting polymer in comparison to their sulfur-containing analogues. Inclusion of larger and more polarizable selenium or tellurium also expected to have a strong influence on the charge transport properties. Notably, Heeney and co-workers showed that the band gap of P3AT can be reduced by as much as 0.3 eV by only substituting sulfur with selenium in the polymer backbone. 5 The reduction of band gap resulted from larger and more polarizable selenium facilitate better π orbital overlap with the polymer backbone and thus stabilize the polymer LUMO (lowest unoccupied molecular orbital). Low-lying LUMO levels are believe to facilitate both electron injection and transport. Recently, PBDTT-SeDPP polymer showed a high Jsc of 16.8 mA/cm2, a Voc of 0.69 V, and a FF of 62%, enabling the best PCE of 7.2%. 6 However, despite fascinating properties of selenium substituted polymers, tellurium containing polymers are less explored, may be due to challenging tellurium chemistry. Jahnke and co-workers recently reported first soluble tellurophene polymer, poly(3-alkyltellurophene) (P3ATe), prepared by both electrochemical and Kumuda coupling polymerization method. 7 Even though, preliminary PCE (1.1%) was modest, tellurium substitution resulted in red-shifted film absorption. In this contribution, we report the synthesis and characterization of vinylene copolymers containing 3-alkylthiophene, selenophene or tellurophene. This allows us systematically investigate the role of selenium or tellurium on the polymer properties. Here, we report the first synthesis of novel 2,5-dibrominated 3-alkyltellurophene monomer and its Pd[0]-catalyzed copolymerization with (E)1,2-bis(tributylstannyl)ethylene to afford poly(3-alkyltellurophenylenevinylene) (P3ATeV). 8 We compare the optoelectronic properties of P3ATeV with analogous sulfur (P3ATV) and selenium (P3ASV) containing polymers. Preliminary OFET data will also be incorporated. Scheme 1. Structures of P3AX, P3AXV copolymers.Qscienc

    Correlation between pseudotyped virus and authentic virus neutralisation assays, a systematic review and meta-analysis of the literature

    Get PDF
    Background: The virus neutralization assay is a principal method to assess the efficacy of antibodies in blocking viral entry. Due to biosafety handling requirements of viruses classified as hazard group 3 or 4, pseudotyped viruses can be used as a safer alternative. However, it is often queried how well the results derived from pseudotyped viruses correlate with authentic virus. This systematic review and meta-analysis was designed to comprehensively evaluate the correlation between the two assays. Methods: Using PubMed and Google Scholar, reports that incorporated neutralisation assays with both pseudotyped virus, authentic virus, and the application of a mathematical formula to assess the relationship between the results, were selected for review. Our searches identified 67 reports, of which 22 underwent a three-level meta-analysis. Results: The three-level meta-analysis revealed a high level of correlation between pseudotyped viruses and authentic viruses when used in an neutralisation assay. Reports that were not included in the meta-analysis also showed a high degree of correlation, with the exception of lentiviral-based pseudotyped Ebola viruses. Conclusion: Pseudotyped viruses identified in this report can be used as a surrogate for authentic virus, though care must be taken in considering which pseudotype core to use when generating new uncharacterised pseudotyped viruses

    Coronavirus Pseudotypes for All Circulating Human Coronaviruses for Quantification of Cross-Neutralizing Antibody Responses.

    Get PDF
    The novel coronavirus SARS-CoV-2 is the seventh identified human coronavirus. Understanding the extent of pre-existing immunity induced by seropositivity to endemic seasonal coronaviruses and the impact of cross-reactivity on COVID-19 disease progression remains a key research question in immunity to SARS-CoV-2 and the immunopathology of COVID-2019 disease. This paper describes a panel of lentiviral pseudotypes bearing the spike (S) proteins for each of the seven human coronaviruses (HCoVs), generated under similar conditions optimized for high titre production allowing a high-throughput investigation of antibody neutralization breadth. Optimal production conditions and most readily available permissive target cell lines were determined for spike-mediated entry by each HCoV pseudotype: SARS-CoV-1, SARS-CoV-2 and HCoV-NL63 best transduced HEK293T/17 cells transfected with ACE2 and TMPRSS2, HCoV-229E and MERS-CoV preferentially entered HUH7 cells, and CHO cells were most permissive for the seasonal betacoronavirus HCoV-HKU1. Entry of ACE2 using pseudotypes was enhanced by ACE2 and TMPRSS2 expression in target cells, whilst TMPRSS2 transfection rendered HEK293T/17 cells permissive for HCoV-HKU1 and HCoV-OC43 entry. Additionally, pseudotype viruses were produced bearing additional coronavirus surface proteins, including the SARS-CoV-2 Envelope (E) and Membrane (M) proteins and HCoV-OC43/HCoV-HKU1 Haemagglutinin-Esterase (HE) proteins. This panel of lentiviral pseudotypes provides a safe, rapidly quantifiable and high-throughput tool for serological comparison of pan-coronavirus neutralizing responses; this can be used to elucidate antibody dynamics against individual coronaviruses and the effects of antibody cross-reactivity on clinical outcome following natural infection or vaccination
    • …
    corecore