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The virus neutralization assay is a principal method to assess the efficacy of antibodies in blocking viral entry. Due to biosafety
handling requirements of viruses classified as hazard group 3 or 4, pseudotyped viruses can be used as safer alternative.
However, it is often queried how well the results derived from pseudotyped viruses correlate with authentic virus. This
systematic review and meta-analysis was designed to comprehensively evaluate the correlation between the two assays.Methods:
Using PubMed and Google Scholar, reports that incorporated neutralisation assays with both pseudotyped virus, authentic virus,
and the application of a mathematical formula to assess the relationship between the results, were selected for review. Our
searches identified 67 reports, of which 22 underwent a three-level meta-analysis.The three-level meta-analysis revealed a high
level of correlation between pseudotyped viruses and authentic viruses when used in an neutralisation assay. Reports that were
not included in the meta-analysis also showed a high degree of correlation, with the exception of lentiviral-based pseudotyped
Ebola viruses.Pseudotyped viruses identified in this report can be used as a surrogate for authentic virus, though care must be
taken in considering which pseudotype core to use when generating new uncharacterised pseudotyped viruses.No. of Reports
Correlation Range (Linear R 2 ) Correlation Range (Pearson's) Correlation Range (Spearman's) Correlation Range (Intra-Class)

   

  Contribution to the field

Neutralisation assays are considered the gold standard for measuring the magnitude of neutralising antibodies and typically
require the use of authentic virus or pseudotyped virus; a safe-to-handle chimeric virus that can display viral glycoproteins of
many highly pathogenic viruses. It is commonly queried as to whether the results from both assay platforms correlate. Whilst
some studies incorporated a correlation analysis in their report, there is not a single systematic review nor meta-analysis in the
literature to date that aimed to evaluate the correlation between the results generated by the two platforms. This question is
pertinent, with the increasing uptake of pseudotyped virus neutralisation assays as a consequence of the recent COVID-19
pandemic and their increasing application to clinical trials. A manuscript dedicated strictly for this question would be greatly
informative to the wider community. We targeted this gap in the knowledge by aggregating reported correlation values, and then
by using a three-level meta-analysis, we show that there is a strong correlation between pseudotyped and authentic virus-based
neutralisation assays for SARS-CoV-2. Ultimately, we provide information on more than 60 correlation values across more than 10
different viruses that have been pseudotyped and characterised.
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Abstract 22 

Background: The virus neutralization assay is a principal method to assess the efficacy of antibodies 23 

in blocking viral entry. Due to biosafety handling requirements of viruses classified as hazard group 24 

3 or 4, pseudotyped viruses can be used as safer alternative. However, it is often queried how well the 25 

results derived from pseudotyped viruses correlate with authentic virus. This systematic review and 26 

meta-analysis was designed to comprehensively evaluate the correlation between the two assays. 27 

Methods: Using PubMed and Google Scholar, reports that incorporated neutralisation assays with 28 

both pseudotyped virus, authentic virus, and the application of a mathematical formula to assess the 29 

relationship between the results, were selected for review. Our searches identified 67 reports, of 30 

which 22 underwent a three-level meta-analysis. 31 

Results: The three-level meta-analysis revealed a high level of correlation between pseudotyped 32 

viruses and authentic viruses when used in an neutralisation assay. Reports that were not included in 33 

the meta-analysis also showed a high degree of correlation, with the exception of lentiviral-based 34 

pseudotyped Ebola viruses. 35 

Conclusion: Pseudotyped viruses identified in this report can be used as a surrogate for authentic 36 

virus, though care must be taken in considering which pseudotype core to use when generating new 37 

uncharacterised pseudotyped viruses. 38 

  39 
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1 Introduction 40 

Serological assays are an invaluable tool in detecting exposure of pathogens in organisms and 41 

understanding the immune system’s response. The level of insight gained from these assays during a 42 

disease outbreak is crucial for the initial medical response, and subsequently understanding the 43 

dynamics, strength and longevity of the immune response (1–3). An important protective response 44 

requires antibody interaction with the pathogen. Upon infection, the humoral response produces 45 

antibodies that bind to the antigens displayed by the pathogen, including those that prevent interaction 46 

with the receptors necessary for entry into host cells. Assays for antibody analysis have proved 47 

effective during recent viral outbreaks, such as those caused by Ebola virus (4,5) and Severe Acute 48 

Respiratory Coronavirus 2 virus (SARS-CoV-2) (6–8), as they allow for detection and monitoring of 49 

viral spread in a population. Such assays are similarly applied to animals, which can also identify 50 

intermediary hosts or potential reservoirs and provide information about the potential for zoonotic 51 

spillover (9,10), as well as inform on vaccines and treatment efficacy in preclinical studies . 52 

Some serological assays, such as enzyme-linked immuno-absorbance assays (ELISA), can identify the 53 

presence of antigen-binding antibodies within a day of receiving a human or animal blood sample 54 

(11,12). When considering antibodies targeting a viral glycoprotein, typically a proportion of the 55 

binding antibodies to a viral glycoprotein successfully impair the virus entry, whilst other antibodies 56 

bind to non neutralising epitopes, enabling other antibody-mediated immune functions (13). This 57 

highlights a shortcoming of binding assays such as ELISAs which lack the functional component of 58 

measuring virus entry into cells. Owing to this, in order to measure functional activity, specifically the 59 

ability of antibodies in preventing entry, a neutralisation assay is required. These assays are considered 60 

the gold standard for measuring the presence and magnitude of neutralising antibodies and typically 61 

require the use of authentic virus (14).  As a result, these assays often take several days to allow the 62 

virus to grow and are subject to biosafety containment requirements depending on the virus under 63 
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investigation. This restricts the study of viruses classified as hazard group 3 or 4, such as SARS-CoV-64 

2 or Ebola virus and Nipah virus, due to the paucity of facilities that possess such high level of 65 

biocontainment. An approach to circumvent these requirements is to use a pseudotyped virus (PV), 66 

which can be handled at containment level 2 or below. These are comparatively easier to produce, 67 

typically by plasmid transfections, and, under optimized conditions, can be produced within 3 to 5 68 

days. Many reviews have been published regarding pseudotype production, core composition, and their 69 

uses.  (15–20). These chimeric viruses commonly use a retroviral or VSV nucleocapsid core are 70 

surrounded by a lipid envelope bearing viral glycoproteins of a heterologous virus of interest on their 71 

surface. Often, PVs do not contain the virus genomic material required for replication. Instead, the 72 

modified genome is replaced by a transgene, for example a reporter gene such as green fluorescent 73 

protein (GFP) or luciferase enzyme (16). Upon successful entry into target cells, transgene expression 74 

allows for quantification of infected cells. Primarily due to their replication deficiency, PVs can be 75 

handled in a containment level 2 laboratories, which are common facilities in biological research 76 

laboratories (18). Many viruses of high consequence have been pseudotyped successfully and rapidly 77 

during the onset of an outbreak, as authentic viruses typically require isolation and stock amplification, 78 

whereas PVs require a published sequence of the viral glycoprotein to be cloned into an expression 79 

plasmid. Due to their external mimicry of the virus of interest, with reduced risk of acquiring mutations 80 

during production in mammalian tissue culture as seen with authentic viruses, PVs are an effective tool 81 

to use in neutralisation assays (18,19). The COVID-19 global pandemic, caused by the SARS-CoV-2, 82 

caused a significant rise in the use of pseudotype assays for both serology and molecular virology 83 

studies (17,21). When PVs are used in a multi-well plate assay setting they are often referred to as 84 

pseudotype virus microneutralisation assays (pMNA). For the purposes of this systematic review, the 85 

alternative authentic virus microneutralisation assay will be referred to as (vMNA). 86 
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Given that neutralising antibodies are one of the principle components measured to determine 87 

correlates or surrogates of protection against disease or infection (22–24), the neutralisation test 88 

remains a critical assay. An important aspect when determining a correlate or surrogate of protection 89 

is to be able to draw comparisons between data and bridge between studies. By calibrating assays to a 90 

common reference reagent, often a pooled sera sample, assay readouts can be standardised across 91 

laboratories worldwide as these relative results are reported in a standard unitage (25–27). It is 92 

important that such common reagent is used correctly to calibrate in house standards, but in some cases, 93 

this is still not enough and the reduction of inter-laboratory variation can only be achieved by sharing 94 

common protocols and critical reagents similar to the approach used by the CEPI Centralised 95 

Laboratories network. Such reference reagents have been produced for several viruses, including many 96 

of high consequence which are applicable to pseudotyping (28–30). Whilst reporting results relative to 97 

a reference reagent reduces inter-laboratory variations and allows comparisons between assays, it is 98 

fundamentally important to investigate whether surrogate assays, designed to mimic and replace 99 

vMNAs which employ highly pathogenic viruses, correlate. If there is a correlation between a pMNA 100 

and a vMNA, then the results from either assay could be applied within clinical trials and investigations 101 

aimed at identifying the correlates for protection against a virus. 102 

However, it is commonly queried how well the results from a pMNA correlate with those from a 103 

vMNA.  The question is particularly relevant with the increasing uptake of pMNAs as a consequence 104 

of the recent COVID-19 pandemic and their  increasing application to clinical trials as focus turns to 105 

vaccine development for other high consequence pathogens (31,32). The studies to-date use a mixture 106 

of correlation formulae, most of which are Pearson’s R and/or Spearman’s Rho (33,34). Other studies 107 

have instead fitted linear regressions to understand the relationship between the two variables, with the 108 

R2 value providing an equivalent measure to the square of Pearson’s R in the case of a positive 109 

relationship (35).  Several reviews on PVs or neutralisation assays have included some of these studies 110 
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which sought to correlate results from both assays, yet only a handful are cited (17–19). Despite several 111 

studies directly comparing PV and authentic virus neutralization assays, correlation information tends 112 

to be buried in the mass of data or supplementary material in these reports. It is likely that for these 113 

reasons, the question as to whether the two assays correlate is still frequently posed.  114 

To the best of our knowledge, there is no systematic review nor meta-analysis that has condensed the 115 

literature that has correlated pMNA and vMNA. Therefore, the purpose of this systematic review and 116 

meta-analysis is to collect the available information on the comparison between the two tests, analyse 117 

the strength of correlations, and present the results in a clear and coherent manner. Overall, we aim to 118 

inform the wider community whether pseudotyped viruses can be used as surrogates for authentic virus 119 

for the purposes of a neutralisation assay and subsequently to determine the correlates of protection 120 

against a virus. Despite the findings within this report, it remains critical that PV-based assays continue 121 

to be assayed and correlated with authentic virus wherever possible, particularly if a new PV has been 122 

designed for use. Given that correlation coefficient values have different classifications of strength 123 

based on the field of study, we included a table based on the definitions that are often cited in the field 124 

of medicine (34,36,37) (Table 1). 125 

2 Methods 126 

2.1 Search Strategy and Selection Criteria 127 

Google Scholar and PubMed were used to identify published research articles which reported data on 128 

correlation between pMNA and vMNAs. The following Boolean search terms were employed to filter 129 

studies indexed in Google Scholar and PubMed: “pseudotype|pseudotyped|pseudoparticle” 130 

“correlate|correlated|correlation” “live” “virus” “neutralisation|neutralization”. 131 

 132 

The criteria for inclusion were reports that contained neutralisation assays with both pseudotype virus 133 

and authentic virus, as well as application of a mathematical formula to assess the relationship between 134 
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the results, either by linear regression, Pearson’s correlation, Spearman’s rank, or a combination of the 135 

three. Studies that did not present any form of analysis of correlation were excluded. 136 

2.2 Data Collection 137 

We extracted the following data from reports that satisfied our selection criteria: report author name 138 

and year, virus used, pseudotype core used, neutralisation assay readout (both for pMNA and vMNA), 139 

correlation method, p value of the correlation coefficients, number of samples, and sample types. In 140 

total, we identified 67 reports that satisfied our selection criteria and were used for comparative data 141 

analysis.  142 

2.3 Statistical Analysis 143 

For our meta-analysis, we considered data for the relationships between SARS-CoV-2 PVs and 144 

authentic virus. There was insufficient data to consider other viruses in separate meta-analyses and we 145 

decided not to analyse the results from multiple viruses together. We instead present the data for other 146 

viruses in a table in the supplementary materials (Suppl. Table 1). For the studies reporting a linear 147 

regression (R2), we opted to convert the value by its square-root, so that it may be combined with the 148 

Pearson’s R values derived from other studies and therefore included in the analysis. We checked that 149 

all regressions reported only included the PVs and authentic virus and that the relationships were all 150 

positive. We did not have sufficient Spearman’s Rho values to analyse and these cannot be directly 151 

combined with the Pearson’s R values, as they do not measure the same characteristic. Therefore, we 152 

did not attempt to carry out a meta-analysis of Spearman’s Rho coefficients. These values are reported 153 

in the supplementary materials (Suppl. Table 1). We therefore used a dataset of 50 Pearson’s R 154 

coefficients from 22 papers. Since studies on SARS-CoV-2 used different PV cores (HIV and VSV), 155 

PV assays (eGFP, GFP, Luciferase, PRNT and SEAP) and sample types (hamster sera, human mAbs, 156 

human plasma and human sera), we checked for differences in the Pearson’s correlations between 157 

studies using t-tests with a null hypothesis of no difference in the mean Pearson’s correlations between 158 
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the groups containing at least 10 results (Suppl. Figure 1). Since we failed to reject the null hypothesis 159 

for any comparison, we decided to carry out our meta-analysis on the full dataset. We had only very 160 

limited results reported for different SARS-CoV-2 variants, so that investigating differences in results 161 

for each variant alone is left for future work. The analysed datasets used identical variants for PV and 162 

authentic viruses. 163 

We conducted a three-level meta-analysis of Fisher’s z-transformed Pearson’s correlations, using the 164 

inverse-variance method, accounting for the dependence between multiple results from the same study 165 

(38,39). We assigned data to “clusters” based on their dependence on other data. All coefficients 166 

calculated using the same dataset were considered dependent and were assigned to the same cluster, 167 

resulting in 26 clusters in total. Taking the example of Wang et al, 2020 (40), a correlation coefficient 168 

was calculated for each of two independent datasets, so that these two coefficients were assigned to 169 

separate clusters, while Sholukh et al, 2021 (41) presented four correlation coefficients that were 170 

calculated using the same datasets, so that these coefficients were all assigned to the same cluster. 171 

Clusters with higher estimated sampling variance of their correlation coefficients, e.g., due to lower 172 

sample sizes, are given lower weights in the calculation of the pooled correlation, while clusters are 173 

given higher weights if there is less dependence among their correlation coefficients (39). The 174 

heterogeneity variance, τ2, was calculated using the restricted maximum likelihood estimator, with 175 

confidence interval estimates calculated using the profile likelihood method. We assessed 176 

heterogeneity using the I2 and H statistics (42) and we calculated prediction intervals (using the t-177 

distribution) for the pooled correlation estimate. While confidence intervals provide measures of 178 

uncertainty around the true mean values of correlation, the prediction interval provides a measure of 179 

uncertainty around the likely values of correlation to be seen in future studies (38). We checked for 180 

influential outliers by removing correlations in turn and recalculating all estimates. We plotted Fisher’s 181 

z-transformed correlation against standard error (a “funnel plot”) to assess possible publication bias. 182 
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All calculations were carried out in R version 4.3.1 (R Core Team, 2022) using the packages meta (42), 183 

metafor (44) and dmetar (45). 184 

3 Results 185 

3.1 Results of Literature Search 186 

Our search terms returned a total of 33 reports in PubMed and 5,880 reports in Google Scholar. After 187 

manually screening abstracts and titles, we identified 80 studies that met our selection criteria and 188 

ultimately included 67 reports in this systematic review (Suppl. Table 1). The primary reason for 189 

exclusion were reports that either did not include both pMNA and vMNA, or reported neutralisation 190 

titres in both the pMNA and vMNA, but did not carry out a correlation analysis between the two 191 

methods. Briefly, the total number of reports found for each virus were;  SARS-CoV-2 (n=32) 192 

(40,41,46–75), SARS-CoV-1 (n=2) (76,77), Canine distemper virus (CDV, n=1) (78), Chikungunya 193 

virus (CHIKV, n=1) (79), European bat lyssavirus 1 (EBLV-1, n=1) (80), EBLV-2 (n=1) (80), Ebola 194 

virus (EBOV, n=3) (81–83), Hepatitis C virus (HCV, n=3) (84–86), Human immunodeficiency virus 195 

(HIV, n=1) (87), Hantaan orthohantavirus (HTNV, n=2) (88,89), Influenza A virus H5N1 (IAV H5N1, 196 

n=5) (90–94), IAV H7N9 (n=1) (95), Japanese encephalitis virus (JEV, n=1) (96), Lagos bat virus 197 

(LBV, n=1) (97), Middle East respiratory syndrome virus (MERS, n=4) (98–101), Newcastle disease 198 

virus (NDV, n=1) (102), Nipah virus (NIV, n=1) (103), Peste des petite ruminants virus (PPRV, n=1) 199 

(104), Puumala virus (PUUV, n=1) (105), Rift Valley fever virus (RVF, n=1) (106), Rabies virus 200 

(RABV, n=2) (107,108), and Seoul orthohantavirus (SEOV, n=2) (88,89). A summary of the findings 201 

from these reports can be viewed in Table 2 (Table 2), whereas a more detailed breakdown for each 202 

report can be viewed in the supplementary file (Suppl. Table 1).  203 

Aside from SARS-CoV-2 which will be analysed in the following sections of this study, we found that 204 

in general, most of the pseudotypes correlated well with the vMNA, irrespective of pseudotype cores 205 

and the readout techniques used to measure the assay results (Suppl. Table 1.). We found some studies 206 
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that did not clarify the correlation test used, and were therefore omitted from Table 2, though relevant 207 

information including the r value is still included in the supplementary table 1. Interestingly, a study 208 

analysing the EBOV PVs reported that the choice of the PV core had a substantial impact on correlation 209 

with authentic virus (82,83). When the negative control samples were omitted from the neutralisation 210 

assays, the correlation coefficients dropped from 0.68, 0.77 to -0.03 and 0.18, effectively showing no 211 

correlation, whereas the samples assayed with the VSV core PVs retained correlation coefficients of 212 

0.84 and 0.96 (Suppl. Table 1.). This study highlights the need to consistently verify whether cores of 213 

pseudotypes can affect correlations with vMNAs. 214 

3.2 Three-Level Meta-analysis Results 215 

From 22 SARS-CoV-2 studies we analysed 50 Pearson’s correlation coefficients, which were derived 216 

from a combined total of 1238 data points by pMNA and vMNA (Figure 2). As stated in the methods, 217 

we verified that there were no significant differences in the mean Pearson’s correlation values between 218 

studies that used different PV cores, neutralising reagents and assay readout types (Suppl. Figure. 1). 219 

We calculated a pooled correlation of 0.86 (95% CI; 0.82-0.89, p < 0.01). These results suggest that 220 

there is a strong correlation between the results derived by pMNA and vMNA.  221 

The results indicated the presence of low to moderate between-cluster heterogeneity (I2=37.1% (CI: 222 

11.2%-55.5%); H=1.26 (CI: 1.06 to 1.50); τ2=0.05 (CI: 0.02-0.12)). This means that there is some weak 223 

evidence of differences in the true effect sizes in the study. A 95% prediction interval (PI) for the 224 

pooled correlation is 0.69-0.94, which means that it is highly likely that the true correlation between 225 

pMNA and vMNA in a future study will lie between 0.69 and 0.94. Since this is entirely greater than 226 

0.5, this provides us with evidence of a positive relationship between pMNA and vMNA for SARS-227 

CoV-2, appropriately accounting for the distribution of effects amongst the studies. Removing results 228 

in turn did not lead to substantial reductions in heterogeneity. Our “funnel plot” (Suppl. Figure 2) 229 
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shows that most points lie within the funnel shape in a symmetrical pattern, providing no evidence of 230 

publication bias. 231 

Our “forest plot” (Figure 3) shows the calculated interval estimates for each study. We note that the 232 

majority of the interval estimates include our pooled estimate and that all studies except Mykytyn et 233 

al. (61) , which has very small reported sample sizes, have entirely positive interval estimates. 234 

3.3 Agreement between pMNA and vMNA by Bland-Altman method 235 

Since Pearson’s or Spearman’s are used for understanding correlation between two variables, they may 236 

not determine whether different assays are strictly in agreement with each other. The Bland-Altman 237 

method (109) is a frequently applied analysis which is often used to determine agreement between two 238 

methods that aim to measure the same variable, in this case, antibody neutralising capability. Within 239 

our literature search, several studies have used the Bland-Altman method of analysis. Therefore, we 240 

also refined the literature search used for this study by adding the search terms; “Bland-Altman”. All 241 

four resulting papers identified were already included from the main literature search. Due to the power 242 

of this statistical method, we opted to present the results by the Bland-Altman method within the reports 243 

in a separate table (Table 3). All studies that reported results from the Bland-Altman method showed 244 

high levels of agreement between pMNA and vMNA. 245 

4 Discussion 246 

Given the interest in the results derived by pMNA compared to vMNA, our systematic review and 247 

meta-analysis sought to consolidate the data to inform the wider community on whether there is a 248 

correlation and subsequently, agreement between the two assays. The results of the meta-analysis 249 

would confirm that for SARS-CoV-2 there is a strong degree of correlation between pMNA and 250 

vMNA. Despite the limited number of studies, the Bland-Altman results presented in this manuscript 251 

also indicate a high level of agreement between the two assays. This data support the use of pMNA as 252 
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a surrogate to the vMNA, though more correlation studies by Bland-Altman would be very valuable to 253 

perform in future reports. 254 

Moreover, since multiple viral cores can be used for pseudotyping, it is important to assess whether 255 

this could impact the pMNA vs vMNA correlation. It would appear that in the case of the Ebola virus, 256 

there is a lower concordance,  if a lentiviral core is used in the pMNA compared with a VSV core 257 

(82,83). Whilst the precise reason for influence of the core remains unknown, though speculated to be 258 

due to the morphological difference between a VSV capsid and a filamentous EBOV particle (82) or 259 

the target cells, which is the same for the authentic virus and EBOV-VSV but differ for the lenti-based 260 

pMNA.  It will be important to determine whether these differences exist in the case of other filoviruses 261 

and indeed other viruses, as there may be a high risk of reporting erroneous results. Therefore, it is 262 

important to optimize all aspects of the pMNA and different pseudotype cores combined with identical 263 

envelope glycoproteins should always be assessed in parallel with the authentic virus in neutralization 264 

tests, if possible. Critically, the two EBOV studies observed the reduced correlation of the lentiviral 265 

cores when negative control sera were excluded from their analyses. Therefore, we advise future 266 

correlation studies to consider not only including negative control samples within their analyses, but 267 

also consider deriving correlations with and without the negative control samples, especially if the 268 

number of samples is low and multiple cores are under assessment. 269 

Interestingly, multiple studies have mentioned that one of the benefits of using PVs is that they are 270 

more sensitive in discriminating samples containing weaker or a low concentration of neutralising 271 

antibodies (92,100,104). In fact, one report provided evidence of the vMN assay reporting false 272 

negative results on samples that contained neutralising antibodies, successfully detected by the pMN 273 

(102). Whilst this would highlight the benefits of using PVs for detecting positive samples within a 274 

human or animal population, it is may also bring into question whether the results derived from the 275 

weaker samples could protect the individual or animal from subsequent infection, given that the 276 

In review



 

 
13 

authentic virus was not neutralised. However, it is essential to consider that lower limits of detections 277 

can change based on assay design, virus species, the titre of the virus used, and the volume of serum 278 

sample used. This highlights reporting of results relative to a reference reagent can add value by 279 

enabling comparisons between data produced by different methods. Whilst use of a reference material 280 

will not ultimately improve assay performance, it helps to highlight differences. In any case, having a 281 

more sensitive assay such as the pMNA would prove to be very useful for epidemiological studies that 282 

are aiming to determine whether a virus exists or existed in a particular human or animal population, 283 

as opposed to correlating neutralising titres towards disease severity or protection. 284 

Lastly, it is very important to distinguish the type of interpretation derived from either Pearson’s R or 285 

Spearman’s rank correlation analyses and the Bland-Altman plot. Neither the Pearson’s R, which is a 286 

measure of the linear relationship between two variables, nor the Spearman’s rank, that informs on 287 

correlation from measurements taken on an ordinal scale, provide information on the agreement 288 

between two different assays. In this case, the Bland-Altman method is required (109). Our literature 289 

search has shown for multiple viruses that the pMNA and vMNA have high agreement for multiple 290 

viruses in several families. 291 

The main limitation of our systematic review is that it was biased towards SARS-CoV-2, due to the 292 

sheer number of publications dedicated to this virus in the past three years, providing enough 293 

correlation values that allowed for the meta-analysis. Whilst it would have been useful to carry out the 294 

same analysis for other viruses, unfortunately there were not enough correlation values.  We did not 295 

use the Spearman’s Rho coefficients in our analyses, but the strong positive values of these, for both 296 

SARS-CoV-2 and other viruses (Suppl. Table 1) do not disagree with our main conclusions that PVs 297 

and authentic virus showed strong positive relationships. Some of the studies used very small sample 298 

sizes, which was accounted for through giving lower weights to these studies. We opted to include 299 

studies that used PVs that are non-replicative, single cycle of infection, therefore excluding  studies 300 
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that used replicon infection systems , despite some of these reports showed high correlation and high 301 

level of agreement between single-round replicons and authentic virus in a neutralisation assay 302 

(110,111). Lastly, new virus and cell-free assays have now been developed for SARS-CoV-2 that 303 

measure the capability of antibodies blocking the spike protein from interacting with its receptor ACE-304 

2, effectively becoming a surrogate neutralisation assay, have shown to have strong correlations with 305 

both pMNAs and vMNAs (51,69,112–114). Whilst these assays do not fit the scope of this study, we 306 

believe it is worth mentioning and monitoring for follow up meta-analyses. 307 

In summary, our systematic review and meta-analysis shows that the pMNA designed for use towards 308 

SARS-CoV-2 serological studies demonstrated a high degree of correlation with assays performed 309 

using the authentic virus. In addition, many other viruses that have been pseudotyped also show a high 310 

degree of correlation. We recommend, where possible, that future studies on methods agreement should 311 

continue to investigate the use of multiple PV cores, to determine whether there could be differences 312 

in neutralisation titres, such as that exemplified with Ebola virus PVs.  It is also essential that future 313 

studies incorporate the Bland-Altman analysis to determine the agreement between the two assays as 314 

well as this is substantially more informative, especially when both assay results are to be applied to 315 

clinical trials and assessed for determining correlates of protection. Ultimately, we would encourage 316 

laboratories to calibrate assays to reference materials, if one is available and relevant for the isolate 317 

under study, which will support these future comparisons and critically provide traceability to a 318 

correlate of protection once derived. 319 
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Table 1. Guide for interpreting correlation coefficients in the medical field of study.  731 

  732 

Correlation Coefficient value Strength of Relationship 

>0.8 Very strong 

0.6 - 0.79 moderately strong 

0.3 - 0.59 Fair 

<0.3 Poor 
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Table 2. Summary of reported correlation coefficients. The bounds represent the minimum and maximum point values across the studies. 733 

Virus 
No. of 

Reports 

Correlation Range 

(Linear R2) 

Correlation Range 

(Pearson's) 

Correlation Range 

(Spearman's) 

Correlation Range 

(Intra-Class) 

Severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) 
31 0.385 - 0.993 0.641 - 0.939 0.54 - 1 0.872 - 0.872 

Severe acute respiratory syndrome 

coronavirus 1 (SARS-CoV-1) 
2 - 0.69 - 0.78 - - 

Canine distemper Virus (CDV) 1 - - 0.65 - 0.91 - 

Chikungunya virus (CHIKV) 1 0.78 - 0.98  - - 

European bat 1 lyssavirus (EBLV-1) 1 - 0.79 -0.79 - - 

European bat 2 lyssavirus (EBLV-2) 1 - 0.9 - 0.9 - - 

Ebola virus (EBOV) 3 - 0.96 - 0.96 0.54 - 0.86 - 

Hepatitis C virus (HCV) 3 - 0.893 - 0.893 0.7 - 0.93 - 

Human immunodeficiency virus (HIV) 1 0.903 - 0.903 - - - 

Hantaan virus (HTNV) 1 0.91 - 0.91 - - - 

Influenza A virus H5N1 (IAV H5N1) 5 0.524 - 0980 0.734 - 0.78 0.79 - 0.79 - 

Influenza A virus H7N9 (IAV H7N9) 1 - 0.82 - 0.82 - - 

Japanese encephalitis virus (JEV) 1 0.915 - 0.915 - - - 

Lagos bat lyssavirus (LBV) 1 - 0.83 - 0.83 - - 

Middle East respiratory syndrome virus 

(MERS) 
4 0.96 - 0.96 0.88 - 0.934 0.97 - 0.97 - 

Newcastle disease virus (NDV) 1 0.92 - 0.92 - - - 

Nipah virus (NIV) 1 - - - - 

Peste des petits ruminants virus (PPRV) 1 - - 0.89 - 0.89 - 

Puumala virus (PUUV) 1 - - 0.82 - 0.82 - 

Rift Valley fever virus (RVF) 1 - - 0.77 - 0.77 - 

Rabies virus (RABV) 3 0.946 - 0.946 0.915 - 0.918 - - 

Seoul orthohantavirus (SEOV) 1 0.82 - 0.845 - - - 
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 734 

Table 3. Reported Bland-Altmann results. 735 

  736 

Study Virus Samples Conclusions 

Hyseni et al. 2020 (54) SARS-CoV-2 65 
64/65 samples within 95% Limit of 

Agreement 

Lester et al. 2019 (100) MERS 52 High level of agreement 

Nie et al. 2017 (107) RABV 320 All samples within Limit of Agreement 

Buchy et al. 2010 (91) IAV H5N1 41 High level of agreement 
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Figure 1. Comparison between live virus neutralisation assay and pseudotyped neutralisation 737 

assays. Live viruses are commonly used in neutralisation assays though their practicality may depend 738 

on the biohazard containment regulations (A). Pseudotyped viruses, despite displaying glycoproteins 739 

of highly pathogenic viruses, are designated as a level 2 pathogen (B).  The live virus neutralisation 740 

assay and the pseudotyped virus neutralisation assay are designed in a similar fashion whereby 741 

antibodies are incubated in the presence of virus, followed by addition of a cell line that is susceptible 742 

to virus infection (C). In the context of a SARS-CoV-2 neutralisation assay (D), neutralising 743 

antibodies bind to the Spike protein of the virus, preventing the virus to bind to the required entry 744 

receptor ACE2. Live viruses that enter begin to replicate, whereas pseudotyped viruses only express 745 

the desired reporter gene. Plaque assays, fluorescent staining of viral proteins or qPCR are often used 746 

to measure neutralisation levels in live virus assays (E), whereas pseudotyped assays typically rely on 747 

measuring the intensities of luciferase or fluorescent protein expression (F). The pertinent question of 748 

whether the results derived from either assay correlate still remain (G). Figure created with 749 
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 772 

Figure 2. Flow diagram of the study identification and selection process. 773 
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 795 

 796 

 797 

 798 

Figure 3. Forest Plot of the three-level meta-analysis results. The endpoints of the black or white 799 

horizontal lines represent the endpoints of the 95% CIs for the Pearson’s correlation coefficients for 800 

each study. The grey boxes represent the sample sizes of each study. The vertical dotted line 801 

represents the pooled Pearson’s correlation coefficient estimate and the grey diamond represents the 802 

95% CI for the pooled Pearson’s correlation coefficient estimate. The 95% prediction interval is 803 

shown by the red line. The table columns are, respectively, study name, cluster indicator, sample size 804 

(n) from which Pearson’s correlation coefficient was calculated, correlation as described above, 805 

Pearson’s correlation coefficients, 95% CI of Pearson’s correlation coefficients, and weighting 806 

assigned to each coefficient. 807 

 808 
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