13,564 research outputs found

    The Complexity of Helly-B1B_{1} EPG Graph Recognition

    Full text link
    Golumbic, Lipshteyn, and Stern defined in 2009 the class of EPG graphs, the intersection graph class of edge paths on a grid. An EPG graph GG is a graph that admits a representation where its vertices correspond to paths in a grid QQ, such that two vertices of GG are adjacent if and only if their corresponding paths in QQ have a common edge. If the paths in the representation have at most kk bends, we say that it is a BkB_k-EPG representation. A collection CC of sets satisfies the Helly property when every sub-collection of CC that is pairwise intersecting has at least one common element. In this paper, we show that given a graph GG and an integer kk, the problem of determining whether GG admits a BkB_k-EPG representation whose edge-intersections of paths satisfy the Helly property, so-called Helly-BkB_k-EPG representation, is in NP, for every kk bounded by a polynomial function of V(G)|V(G)|. Moreover, we show that the problem of recognizing Helly-B1B_1-EPG graphs is NP-complete, and it remains NP-complete even when restricted to 2-apex and 3-degenerate graphs

    Gb/s visible light communications with colloidal quantum dot color converters

    Get PDF
    This paper reports the utilization of colloidal semiconductor quantum dots as color converters for Gb/s visible light communications. We briefly review the design and properties of colloidal quantum dots and discuss them in the context of fast color conversion of InGaN light sources, in particular in view of the effects of self-absorption. This is followed by a description of a CQD/polymer composite format of color converters. We show samples of such color-converting composite emitting at green, yellow/orange and red wavelengths, and combine these with a blueemitting microsize LED to form hybrid sources for wireless visible light communication links. In this way data rates up to 1 Gb/s over distances of a few tens of centimeters have been demonstrated. Finally, we broaden the discussion by considering the possibility for wavelength division multiplexing as well as the use of alternative colloidal semiconductor nanocrystals

    On the Age of Stars Harboring Transiting Planets

    Get PDF
    Results of photometric surveys have brought to light the existence of a population of giant planets orbiting their host stars even closer than the hot Jupiters (HJ), with orbital periods below 3 days. The reason why radial velocity surveys were not able to detect these very-hot Jupiters (VHJ) is under discussion. A possible explanation is that these close-in planets are short-lived, being evaporated on short time-scales due to UV flux of their host stars. In this case, stars hosting transiting VHJ planets would be systematically younger than those in the radial velocity sample. We have used the UVES spectrograph (VLT-UT2 telescope) to obtain high resolution spectra of 5 faint stars hosting transiting planets, namely, OGLE-TR-10, 56, 111, 113 and TrES-1. Previously obtained CORALIE spectra of HD189733, and published data on the other transiting planet-hosts were also used. The immediate objective is to estimate ages via Li abundances, using the Ca II activity-age relation, and from the analysis of the stellar rotational velocity. For the stars for which we have spectra, Li abundances were computed as in Israelian et al. (2004) using the stellar parameters derived in Santos et al. (2006). The chromospheric activity index SUSS_{US} was built as the ratio of the flux within the core of the Ca II H & K lines and the flux in two nearby continuum regions. The index SUSS_{US} was calibrated to Mount Wilson index SMWS_{MW} allowing the computation of the Ca II H & K corrected for the photospheric contribution. These values were then used to derive the ages by means of the Henry et al. (1996) activity-age relation. Bearing in mind the limitations of the ages derived by Li abundances, chromospheric activity, and stellar rotational velocities, none of the stars studied in this paper seem to be younger than 0.5 Gyr.Comment: Accepted for publication in A&

    Thermalization of an anisotropic granular particle

    Full text link
    We investigate the dynamics of a needle in a two-dimensional bath composed of thermalized point particles. Collisions between the needle and points are inelastic and characterized by a normal restitution coefficient α<1\alpha<1. By using the Enskog-Boltzmann equation, we obtain analytical expressions for the translational and rotational granular temperatures of the needle and show that these are, in general, different from the bath temperature. The translational temperature always exceeds the rotational one, though the difference decreases with increasing moment of inertia. The predictions of the theory are in very good agreement with numerical simulations of the model.Comment: 7 pages, 6 Figures, submitted to PRE. Revised version (Fig1, Fig5 and Fig6 corrected + minor typos

    Detailed study of the microwave emission of the supernova remnant 3C 396

    Get PDF
    We have observed the supernova remnant 3C~396 in the microwave region using the Parkes 64-m telescope. Observations have been made at 8.4 GHz, 13.5 GHz, and 18.6 GHz and in polarisation at 21.5 GHz. We have used data from several other observatories, including previously unpublished observations performed by the Green Bank Telescope at 31.2 GHz, to investigate the nature of the microwave emission of 3C 396. Results show a spectral energy distribution dominated by a single component power law emission with α=(0.364±0.017)\alpha=(-0.364 \pm 0.017). Data do not favour the presence of anomalous microwave emission coming from the source. Polarised emission at 21.5 GHz is consistent with synchrotron-dominated emission. We present microwave maps and correlate them with infrared (IR) maps in order to characterise the interplay between thermal dust and microwave emission. IR vs. microwave TT plots reveal poor correlation between mid-infrared and microwave emission from the core of the source. On the other hand, a correlation is detected in the tail emission of the outer shell of 3C 396, which could be ascribed to Galactic contamination.Comment: published in MNRA

    Astrometric search for a planet around VB 10

    Full text link
    We observed VB 10 in August and September 2009 using the FORS2 camera of the VLT with the aim of measuring its astrometric motion and of probing the presence of the announced planet VB 10b. We used the published STEPS astrometric positions of VB 10 over a time-span of 9 years, which allowed us to compare the expected motion of VB 10 due to parallax and proper motion with the observed motion and to compute precise deviations. The achieved single-epoch precisions of our observations are about 0.1 mas and the data showed no significant residual trend, while the presence of the planet should have induced an apparent proper motion larger than 10 mas/yr. Subtraction of the predicted orbital motion from the observed data produces a large trend in position residuals of VB 10. We estimated the probability that this trend is caused by random noise. Taking all the uncertainties into account and using Monte-Carlo resampling of the data, we are able to reject the existence of VB 10b with the announced mass of 6.4 M_J with the false alarm probability of only 0.0005. A 3.2 M_J planet is also rejected with a false alarm probability of 0.023.Comment: 6 pages, 6 figures, 2 tables, accepted for publication in A&

    Analyzing the heterogeneity of farmers’ preferences for improvements in dairy cow traits using farmer typologies

    Get PDF
    AbstractGiving consideration to farmers’ preferences for improvements in animal traits when designing genetic selection tools such as selection indexes might increase the uptake of these tools. The increase in use of genetic selection tools will, in turn, assist in the realization of genetic gain in breeding programs. However, the determination of farmers’ preferences is not trivial because of its large heterogeneity. The aim of this study was to quantify Australian dairy farmers’ preferences for cow trait improvements to inform and ultimately direct the choice of traits and selection indexes in the 2014 review of the National Breeding Objective. A specific aim was to analyze the heterogeneity of preferences for cow trait improvements by determining whether there are farmer types that can be identified with specific patterns of preferences. We analyzed whether farmer types differed in farming system, socioeconomic profile, and attitudes toward breeding and genetic evaluation tools. An online survey was developed to explore farmers’ preferences for improvement in 13 cow traits. The pairwise comparisons method was used to derive a ranking of the traits for each respondent. A total of 551 farmers fully completed the survey. A principal component analysis followed by a Ward hierarchical cluster analysis was used to group farmers according to their preferences. Three types of farmers were determined: (1) production-focused farmers, who gave the highest preference of all for improvements in protein yield, lactation persistency, feed efficiency, cow live weight, and milking speed; (2) functionality-focused farmers with the highest preferences of all for improvements in mastitis, lameness, and calving difficulty; and (3) type-focused farmers with the highest preferences of all for mammary system and type. Farmer types differed in their age, their attitudes toward genetic selection, and in the selection criteria they use. Surprisingly, farmer types did not differ for herd size, calving, feeding system, or breed. These results support the idea that preferences for cow trait improvements are intrinsic to farmers and not to production systems or breeds. As a result of this study, and some bioeconomic modeling (not included in this study), the Australian dairy industry has implemented a main index and 2 alternative indexes targeting the different farmer types described here

    Discovery of a massive X-ray luminous galaxy cluster at z=1.579

    Full text link
    We report on the discovery of a very distant galaxy cluster serendipitously detected in the archive of the XMM-Newton mission, within the scope of the XMM-Newton Distant Cluster Project (XDCP). XMMUJ0044.0-2033 was detected at a high significance level (5sigma) as a compact, but significantly extended source in the X-ray data, with a soft-band flux f(r<40")=(1.5+-0.3)x10^(-14) erg/s/cm2. Optical/NIR follow-up observations confirmed the presence of an overdensity of red galaxies matching the X-ray emission. The cluster was spectroscopically confirmed to be at z=1.579 using ground-based VLT/FORS2 spectroscopy. The analysis of the I-H colour-magnitude diagram shows a sequence of red galaxies with a colour range [3.7 < I-H < 4.6] within 1' from the cluster X-ray emission peak. However, the three spectroscopic members (all with complex morphology) have significantly bluer colours relative to the observed red-sequence. In addition, two of the three cluster members have [OII] emission, indicative of on-going star formation. Using the spectroscopic redshift we estimated the X-ray bolometric luminosity, Lbol = 5.8x10^44 erg/s, implying a massive galaxy cluster. This places XMMU J0044.0-2033 at the forefront of massive distant clusters, closing the gap between lower redshift systems and recently discovered proto- and low-mass clusters at z >1.6.Comment: letter to appear in A&

    Breakdown of Energy Equipartition in a 2D Binary Vibrated Granular Gas

    Full text link
    We report experiments on the equipartition of kinetic energy between grains made of two different materials in a mixture of grains vibrated in 2 dimensions. In general, the two types of grains do not attain the same granular temperature, Tg = 1/2m v^2. However, the ratio of the two temperatures is constant in the bulk of the system and independent of the vibration velocity. The ratio depends strongly on the ratio of mass densities of the grains, but is not sensitive to the inelasticity of grains. Also, this ratio is insensitive to compositional variables of the mixture such as the number fraction of each component and the total number density. We conclude that a single granular temperature, as traditionally defined, does not characterize a multi-component mixture.Comment: 4 pages, 5 figures, submitted to Physical Review Letters, updated reference

    Bloch-Like Quantum Multiple Reflections of Atoms

    Full text link
    We show that under certain circumstances an atom can follow an oscillatory motion in a periodic laser profile with a Gaussian envelope. These oscillations can be well explained by using a model of energetically forbidden spatial regions. The similarities and differences with Bloch oscillations are discussed. We demonstrate that the effect exists not only for repulsive but also for attractive potentials, i.e. quantum multiple reflections are also possible.Comment: LaTeX, 7 pages, 7 figure
    corecore