12 research outputs found

    Study of Antibiosis and Nonpreference Mechanisms of Greenbug Resistance of "Bloomless" Sorghum

    Get PDF
    Agronom

    Prevalence of Bordetella pertussis and Bordetella parapertussis in Samples Submitted for RSV Screening

    Get PDF
    Background: The clinical presentation of Bordetella pertussis can overlap with that of respiratory syncytial virus (RSV); however, management differs.Hypothesis: First, the prevalence of B. pertussis is less than 2% among patients screened for RSV, and second the prevalence of B. parapertussis is also less than 2% among these patients.Methods: Nasal washings submitted to a clinical laboratory for RSV screening were tested for B. pertussis and B. parapertussis, using species-specific real-time polymerase chain reaction (PCR) assays. These were optimized to target conserved regions within a complement gene and the CarB gene, respectively. A Bordetella spp. genus-specific real-time PCR assay was designed to detect the Bhur gene of B. pertussis, B. parapertussis, and B. bronchiseptica. RSV A and B subtypes were tested by reverse transcription-PCR.Results: Four hundred and eighty-nine clinical samples were tested. There was insufficient material to complete testing for one B. pertussis, 10 RSV subtype A, and four RSV subtype B assays. Bordetella pertussis was detected in 3/488 (0.6%) (95% CI 0.1% to 1.8%), while B. parapertussis was detected in 5/489 (1.0%) (95% CI 0.3% to 2.4%). Dual infection of B. pertussis with RSV and of B. parapertussis with RSV occurred in two and in three cases respectively. RSV was detected by PCR in 127 (26.5%).Conclusion: The prevalence of B. pertussis in nasal washings submitted for RSV screening was less than 2%. The prevalence of parapertussis may be higher than 2%. RSV with B. pertussis and RSV with B. parapertussis coinfection do occur.[WestJEM. 2008;9:135-140.

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    ASAH1pathogenic variants associated with acid ceramidase deficiency: Farber disease and spinal muscular atrophy with progressive myoclonic epilepsy

    No full text
    Farber disease and spinal muscular atrophy with progressive myoclonic epilepsy are a spectrum of rare lysosomal storage disorders characterized by acid ceramidase deficiency (ACD), resulting from pathogenic variants in N-acylsphingosine amidohydrolase 1 (ASAH1). Other than simple listings provided in literature reviews, a curated, comprehensive list ofASAH1mutations associated with ACD clinical phenotypes has not yet been published. This publication includes mutations inASAH1collected through the Observational and Cross-Sectional Cohort Study of the Natural History and Phenotypic Spectrum of Farber Disease (NHS), identifier NCT03233841, in combination with an up-to-date curated list of published mutations. The NHS is the first to collect retrospective and prospective data on living and deceased patients with ACD presenting as Farber disease, who had or had not undergone hematopoietic stem cell transplantation. Forty-five patients representing the known clinical spectrum of Farber disease (living patients aged 1-28 years) were enrolled. The curation of knownASAH1pathogenic variants using a single reference transcript includes 10 previously unpublished from the NHS and 63 that were previously reported. The publication ofASAH1variants will be greatly beneficial to patients undergoing genetic testing in the future by providing a significantly expanded reference list of disease-causing variants
    corecore