24 research outputs found

    Approaches to lowering the cost of large space telescopes

    Full text link
    New development approaches, including launch vehicles and advances in sensors, computing, and software, have lowered the cost of entry into space, and have enabled a revolution in low-cost, high-risk Small Satellite (SmallSat) missions. To bring about a similar transformation in larger space telescopes, it is necessary to reconsider the full paradigm of space observatories. Here we will review the history of space telescope development and cost drivers, and describe an example conceptual design for a low cost 6.5 m optical telescope to enable new science when operated in space at room temperature. It uses a monolithic primary mirror of borosilicate glass, drawing on lessons and tools from decades of experience with ground-based observatories and instruments, as well as flagship space missions. It takes advantage, as do large launch vehicles, of increased computing power and space-worthy commercial electronics in low-cost active predictive control systems to maintain stability. We will describe an approach that incorporates science and trade study results that address driving requirements such as integration and testing costs, reliability, spacecraft jitter, and wavefront stability in this new risk-tolerant "LargeSat" context.Comment: Presented at SPIE, Optics+Photonics 2023, Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems IV in San Diego, CA, US

    Search for New Color-Octet Vector Particle Decaying to ttbar in ppbar Collisions at s=1.96\sqrt{s}=1.96 TeV

    Get PDF
    Submitted to Phys. Lett. BWe present the result of a search for a massive color-octet vector particle, (e.g. a massive gluon) decaying to a pair of top quarks in proton-antiproton collisions with a center-of-mass energy of 1.96 TeV. This search is based on 1.9 fb−1^{-1} of data collected using the CDF detector during Run II of the Tevatron at Fermilab. We study ttˉt\bar{t} events in the lepton+jets channel with at least one bb-tagged jet. A massive gluon is characterized by its mass, decay width, and the strength of its coupling to quarks. These parameters are determined according to the observed invariant mass distribution of top quark pairs. We set limits on the massive gluon coupling strength for masses between 400 and 800 GeV/c2/c^2 and width-to-mass ratios between 0.05 and 0.50. The coupling strength of the hypothetical massive gluon to quarks is consistent with zero within the explored parameter space.We present the result of a search for a massive color-octet vector particle, (e.g. a massive gluon) decaying to a pair of top quarks in proton–antiproton collisions with a center-of-mass energy of 1.96 TeV. This search is based on 1.9 fb−1 of data collected using the CDF detector during Run II of the Tevatron at Fermilab. We study View the MathML source events in the lepton + jets channel with at least one b-tagged jet. A massive gluon is characterized by its mass, decay width, and the strength of its coupling to quarks. These parameters are determined according to the observed invariant mass distribution of top quark pairs. We set limits on the massive gluon coupling strength for masses between 400 and 800 GeV/c2 and width-to-mass ratios between 0.05 and 0.50. The coupling strength of the hypothetical massive gluon to quarks is consistent with zero within the explored parameter space.Peer reviewe

    Buddy D. Martin 1960

    No full text
    Student field notes from zoology classes in 196

    Buddy Guy (1980s)

    No full text
    https://egrove.olemiss.edu/bluesphoto_fel/1074/thumbnail.jp

    20 and 30 m telescope designs with potential for subsequent incorporation into a track-mounted pair

    No full text
    ABSTRACT Any future giant ground-based telescope must, at a minimum, provide foci for seeing-limited imaging over a wide field and for diffraction-limited imaging over ~1 arcminute fields corrected by adaptive optics (AO). While this is possible with a number of design concepts, our choices are constrained if we anticipate wanting to later add a second telescope for imaging with still higher resolution, and very high contrast imaging for exoplanet studies. This paper explores designs that allow for such future development. Higher resolution imaging by interferometric combination of the AO-corrected fields of two telescopes is possible without loss of point-source sensitivity or field of view, as long as the baseline can be held perpendicular to the source and varied in length. This requirement is made practical even for very large telescopes, provided both can move continuously on a circular track. The 20/20 telescope 1 illustrates this concept. Telescopes so mounted can additionally be operated as a Bracewell nulling interferometer with low thermal background, making possible the thermal detection of planets that would have been unresolvable by a single 20 m aperture. In practice, limits set by funding and engineering experience will likely require a single 20 or 30 m telescope be built first. This would be on a conventional alt-az mount, but it should be at a site with enough room for later addition of a companion and track. In anticipation of future motion it should be compact and stiff, with a fast primary focal ratio. We envisage the use of large, highly aspheric, off-axis segments, manufactured using the figuring methods for strong aspherics already proven for 8 m class primaries. A compact giant telescope built under these guidelines should be able to perform well on its own for a broad range of astronomical observations, with good resistance to wind buffeting and simple alignment and control of its few, large segments. We compare here configurations with adjacent hexagonal segments and close-packed circular segments. For given segment parent size and number, the largest effective aperture is achieved if the segments are left as circles, when also the sensitivity and resolution for diffraction-limited operation with AO is higher. Large round segments can also be individually apodized for high-contrast imaging of exoplanets with the entire telescope-for example 8.4 m segments will yield 10 -6 suppression 0.05 arcsec from a star at 1 µm wavelength, and 0.25 arcsec at 5 µm

    Tony Bennett, the McPartlands and Friends Make Magnificent Music (vinyl LP)

    No full text
    Brian Torff is a contributing artist (bassist) on this LP.https://digitalcommons.fairfield.edu/visualandperformingarts-music/1033/thumbnail.jp
    corecore