274 research outputs found

    A diversity of progenitors and histories for isolated spiral galaxies

    Full text link
    We analyze a suite of 33 cosmological simulations of the evolution of Milky Way-mass galaxies in low-density environments. Our sample spans a broad range of Hubble types at z=0, from nearly bulgeless disks to bulge-dominated galaxies. Despite the fact that a large fraction of the bulge is typically in place by z=1, we find no significant correlation between the morphology at z=1 and at z=0. The z=1 progenitors of disk galaxies span a range of morphologies, including smooth disks, unstable disks, interacting galaxies and bulge-dominated systems. By z=0.5, spiral arms and bars are largely in place and the progenitor morphology is correlated with the final morphology. We next focus on late-type galaxies with a bulge-to-total ratio B/T<0.3 at z=0. These show a correlation between B/T at z=0 and the mass ratio of the largest merger at z1. We find that the galaxies with the lowest B/T tend to have a quiet baryon input history, with no major mergers at z<2, and with a low and constant gas accretion rate that keeps a stable angular-momentum direction. More violent merger or gas accretion histories lead to galaxies with more prominent bulges. Most disk galaxies have a bulge Sersic index n<2. The galaxies with the highest bulge Sersic index tend to have histories of intense gas accretion and disk instability rather than active mergers.Comment: Accepted for publication in ApJ. 29 pages, 32 figure

    BAYES-LOSVD: a bayesian framework for non-parametric extraction of the line-of-sight velocity distribution of galaxies

    Full text link
    We introduce BAYES-LOSVD, a novel implementation of the non-parametric extraction of line-of-sight velocity distributions (LOSVDs) in galaxies. We employ bayesian inference to obtain robust LOSVDs and associated uncertainties. Our method relies on principal component analysis to reduce the dimensionality of the base of templates required for the extraction and thus increase the performance of the code. In addition, we implement several options to regularise the output solutions. Our tests, conducted on mock spectra, confirm the ability of our approach to model a wide range of LOSVD shapes, overcoming limitations of the most widely used parametric methods (e.g. Gauss-Hermite expansion). We present examples of LOSVD extractions for real galaxies with known peculiar LOSVD shapes, i.e. NGC4371, IC0719 and NGC4550, using MUSE and SAURON integral-field unit (IFU) data. Our implementation can also handle data from other popular IFU surveys (e.g. ATLAS3D, CALIFA, MaNGA, SAMI). Details of the code and relevant documentation are freely available to the community in the dedicated repositories.Comment: 13 pages, 7 figures. Accepted for publication in Astronomy & Astrophysics. Public repository with the code can be found at: https://github.com/jfalconbarroso/BAYES-LOSV

    How to bend galaxy disc profiles - II. Stars surfing the bar in Type-III discs

    Get PDF
    The radial profiles of stars in disc galaxies are observed to be either purely exponential (Type-I), truncated (Type-II) or antitruncated (Type-III) exponentials. Controlled formation simulations of isolated galaxies can reproduce all of these profile types by varying a single parameter, the initial halo spin. In this paper, we examine these simulations in more detail in an effort to identify the physical mechanism that leads to the formation of Type-III profiles. The stars in the antitruncated outskirts of such discs are now on eccentric orbits, but were born on near-circular orbits at much smaller radii. We show that, and explain how, they were driven to the outskirts via non-linear interactions with a strong and long-lived central bar, which greatly boosted their semimajor axis but also their eccentricity. While bars have been known to cause radial heating and outward migration to stellar orbits, we link this effect to the formation of Type-III profiles. This predicts that the antitruncated parts of galaxies have unusual kinematics for disc-like stellar configurations: high radial velocity dispersions and slow net rotation. Whether such discs exist in nature, can be tested by future observations

    Triggering of merger-induced starbursts by the tidal field of galaxy groups and clusters

    Full text link
    Star formation in galaxies is for a part driven by galaxy mergers. At low redshift, star formation activity is low in high-density environments like groups and clusters, and the star formation activity of galaxies increases with their isolation. This star formation-density relation is observed to be reversed at z~1, which is not explained by theoretical models so far. We study the influence of the tidal field of a galaxy group or cluster on the star formation activity of merging galaxies, using N-body simulations including gas dynamics and star formation. We find that the merger-driven star formation is significantly more active in the vicinity of such cosmological structures compared to mergers in the field. The large-scale tidal field can thus enhance the activity of galaxies in dense cosmic structures, and should be particularly efficient at high redshift before quenching processes take effect in the densest regions.Comment: MNRAS Letters, in pres

    BAYES-LOSVD: A Bayesian framework for non-parametric extraction of the line-of-sight velocity distribution of galaxies

    Get PDF
    We introduce BAYES-LOSVD, a novel implementation of the non-parametric extraction of line-of-sight velocity distributions (LOSVDs) in galaxies. We employed Bayesian inference to obtain robust LOSVDs and associated uncertainties. Our method relies on a principal component analysis to reduce the dimensionality on the set of templates required for the extraction and thus increase the performance of the code. In addition, we implemented several options to regularise the output solutions. Our tests, conducted on mock spectra, confirm the ability of our approach to model a wide range of LOSVD shapes, overcoming limitations of the most widely used parametric methods (e.g., Gauss-Hermite expansion). We present examples of LOSVD extractions for real galaxies with known peculiar LOSVD shapes, including NGC 4371, IC 0719, and NGC 4550, using MUSE and SAURON integral-field unit (IFU) data. Our implementation can also handle data from other popular IFU surveys (e.g., ATLAS3D, CALIFA, MaNGA, SAMI)

    Local variations of the Stellar Velocity Ellipsoid-I: the disc of galaxies in the Auriga simulations

    Get PDF
    DW-M and JF-B acknowledge support through the RAVET project by the grant PID2019-107427GB-C32 from the Spanish Ministry of Science, Innovation and Universities (MCIU), and through the IAC project TRACES which is partially supported through the state budget and the regional budget of the Consejer ' ia de Econom ' ia, Industria, Comercio y Conocimiento of the Canary Islands Autonomous Community.The connection between the Stellar Velocity Ellipsoid (SVE) and the dynamical evolution of galaxies has been a matter of debate in the last years and there is no clear consensus whether different heating agents (e.g. spiral arms, giant molecular clouds, bars and mergers) leave clear detectable signatures in the present day kinematics. Most of these results are based on a single and global SVE and have not taken into account that these agents do not necessarily equally affect all regions of the stellar disc. We study the two-dimensional (2D) spatial distribution of the SVE across the stellar discs of Auriga galaxies, a set of high resolution magnetohydrodynamical cosmological zoom-in simulations, to unveil the connection between local and global kinematic properties in the disc region.We find very similar, global, σz/σr = 0.80 ± 0.08 values for galaxies of different Hubble types. This shows that the global properties of the SVE at z = 0 are not a good indicator of the heating and cooling events experienced by galaxies.We also find that similar σz/σr radial profiles are obtained through different combinations of σz and σr trends: at a local level, the vertical and radial components can evolve differently, leading to similar σz/σr profiles at z = 0. By contrast, the 2D spatial distribution of the SVE varies a lot more from galaxy to galaxy. Present day features in the SVE spatial distribution may be associated with specific interactions such as fly-by encounters or the accretion of low mass satellites even in the cases when the global SVE is not affected. The stellar populations decomposition reveals that young stellar populations present colder and less isotropic SVEs and more complex 2D distributions than their older and hotter counterparts.Spanish Ministry of Science, Innovation and Universities (MCIU) PID2019-107427GB-C32Consejería de Economía, Industria, Comercio y Conocimiento of the Canary Islands Autonomous Communit

    The Relationship Between Mono-Abundance and Mono-Age Stellar Populations in the Milky Way Disk

    Get PDF
    Studying the Milky Way disk structure using stars in narrow bins of [Fe/H] and [α/Fe] has recently been proposed as a powerful method to understand the Galactic thick and thin disk formation. It has been assumed so far that these mono-abundance populations (MAPs) are also coeval, or mono-age, populations. Here we study this relationship for a Milky Way chemodynamical model and show that equivalence between MAPs and mono-age populations exists only for the high-[α/Fe] tail, where the chemical evolution curves of different Galactic radii are far apart. At lower [α/Fe]-values an MAP is composed of stars with a range in ages, even for small observational uncertainties and a small MAP bin size. Due to the disk inside-out formation, for these MAPs younger stars are typically located at larger radii, which results in negative radial age gradients that can be as large as 2 Gyr kpc−1. Positive radial age gradients can result for MAPs at the lowest [α/Fe] and highest [Fe/H] end. Such variations with age prevent the simple interpretation of observations for which accurate ages are not available. Studying the variation with radius of the stellar surface density and scale height in our model, we find good agreement to recent analyses of the APOGEE red-clump (RC) sample when 1–4 Gyr old stars dominate (as expected for the RC). Our results suggest that the APOGEE data are consistent with a Milky Way model for which mono-age populations flare for all ages. We propose observational tests for the validity of our predictions and argue that using accurate age measurements, such as from asteroseismology, is crucial for putting constraints on Galactic formation and evolution

    Revisiting the Stellar Velocity Ellipsoid - Hubble type relation: observations versus simulations

    Get PDF
    The stellar velocity ellipsoid (SVE) in galaxies can provide important information on the processes that participate in the dynamical heating of their disc components (e.g. giant molecular clouds, mergers, spiral density waves, bars). Earlier findings suggested a strong relation between the shape of the disc SVE and Hubble type, with later-type galaxies displaying more anisotropic ellipsoids and early-types being more isotropic. In this paper, we revisit the strength of this relation using an exhaustive compilation of observational results from the literature on this issue. We find no clear correlation between the shape of the disc SVE and morphological type, and show that galaxies with the same Hubble type display a wide range of vertical-to-radial velocity dispersion ratios. The points are distributed around a mean value and scatter of σz/σR=0.7±0.2\sigma_z/\sigma_R=0.7\pm 0.2. With the aid of numerical simulations, we argue that different mechanisms might influence the shape of the SVE in the same manner and that the same process (e.g. mergers) does not have the same impact in all the galaxies. The complexity of the observational picture is confirmed by these simulations, which suggest that the vertical-to-radial axis ratio of the SVE is not a good indicator of the main source of disc heating. Our analysis of those simulations also indicates that the observed shape of the disc SVE may be affected by several processes simultaneously and that the signatures of some of them (e.g. mergers) fade over time
    • …
    corecore