62 research outputs found
Ultra-high efficiency solar cells: the path for mass penetration of solar electricity
For achieving a photovoltaic penetration above one-third of the world demand for electricity in the first half of this century, the importance of a fast manufacturing learning curve that is linked to the capacity of developing cells of increasing efficiency is stressed. Progress in multijunction cells is described as well as three novel concepts promising very high efficiency. It is explained why these concepts will probably be used in concentrator systems
The Lotic Intersite Nitrogen Experiments: an example of successful ecological research collaboration
Collaboration is an essential skill for modern ecologists because it brings together diverse expertise, viewpoints, and study systems. The Lotic Intersite Nitrogen eXperiments (LINX I and II), a 17-y research endeavor involving scores of early- to late-career stream ecologists, is an example of the benefits, challenges, and approaches of successful collaborative research in ecology. The scientific success of LINX reflected tangible attributes including clear scientific goals (hypothesis-driven research), coordinated research methods, a team of cooperative scientists, excellent leadership, extensive communication, and a philosophy of respect for input from all collaborators. Intangible aspects of the collaboration included camaraderie and strong team chemistry. LINX further benefited from being part of a discipline in which collaboration is a tradition, clear data-sharing and authorship guidelines, an approach that melded field experiments and modeling, and a shared collaborative goal in the form of a universal commitment to see the project and resulting data products through to completion
Elastic scattering with weakly bound projectiles
Possible effects of the break-up channel on the elastic scattering threshold anomaly has been investigated. We used the weakly bound 6,7Li nuclei, which is known to undergo break-up, as projectiles in order to study the elastic scattering on a 27Al target. In this contribution we present preliminary results of these experiments, which were analyzed in terms of the Optical Model and compared with other elastic scattering data using weakly bound nuclei as projectile. Ā© 2007 American Institute of Physics.Fil:Figueira, J.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:FernĆ”ndez Niello, J.O. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Arazi, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Capurro, O.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:MartĆ, G.V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Pacheco, A.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
A detailed study of the very-high-energy Crab pulsar emission with the LST-1
Context: There are currently three pulsars firmly detected by imaging atmospheric Cherenkov telescopes (IACTs), two of them reaching TeV energies, challenging models of very-high-energy (VHE) emission in pulsars. More precise observations are needed to better characterize pulsar emission at these energies. The LST-1 is the prototype of the Large-Sized Telescope, that will be part of the Cherenkov Telescope Array Observatory (CTAO). Its improved performance over previous IACTs makes it well suited for studying pulsars. Aims: To study the Crab pulsar emission with the LST-1, improving and complementing the results from other telescopes. These observations can also be used to characterize the potential of the LST-1 to study other pulsars and detect new ones. Methods: We analyzed a total of 103 hours of gamma-ray observations of the Crab pulsar conducted with the LST-1 in the period from September 2020 to January 2023. The observations were carried out at zenith angles less than 50 degrees. A new analysis of the Fermi-LAT data was also performed, including 14 years of observations. Results: The Crab pulsar phaseogram, long-term light-curve, and phase-resolved spectra are reconstructed with the LST-1 from 20 GeV to 450 GeV for P1 and up to 700 GeV for P2. The pulsed emission is detected with a significance of 15.2. The two characteristic emission peaks of the Crab pulsar are clearly detected (>10), as well as the so-called bridge emission (5.7). We find that both peaks are well described by power laws, with spectral indices of 3.44 and 3.03 respectively. The joint analysis of Fermi-LAT and LST-1 data shows a good agreement between both instruments in the overlapping energy range. The detailed results obtained in the first observations of the Crab pulsar with LST-1 show the potential that CTAO will have to study this type of sources
Ordered magnetic fields around the 3C 84 central black hole
Context. 3C 84 is a nearby radio source with a complex total intensity structure, showing linear polarisation and spectral patterns. A detailed investigation of the central engine region necessitates the use of very-long-baseline interferometry (VLBI) above the hitherto available maximum frequency of 86 GHz.Aims. Using ultrahigh resolution VLBI observations at the currently highest available frequency of 228 GHz, we aim to perform a direct detection of compact structures and understand the physical conditions in the compact region of 3C 84.Methods. We used Event Horizon Telescope (EHT) 228 GHz observations and, given the limited (u; v)-coverage, applied geometric model fitting to the data. Furthermore, we employed quasi-simultaneously observed, ancillary multi-frequency VLBI data for the source in order to carry out a comprehensive analysis of the core structure.Results. We report the detection of a highly ordered, strong magnetic field around the central, supermassive black hole of 3C 84. The brightness temperature analysis suggests that the system is in equipartition. We also determined a turnover frequency of gamma(m) = (113 +/- 4) GHz, a corresponding synchrotron self-absorbed magnetic field of B-SSA = (2.9 +/- 1.6) G, and an equipartition magnetic field of B-eq = (5.2 +/- 0.6) G. Three components are resolved with the highest fractional polarisation detected for this object (m(net) = (17.0 +/- 3.9)%). The positions of the components are compatible with those seen in low-frequency VLBI observations since 2017-2018. We report a steeply negative slope of the spectrum at 228 GHz. We used these findings to test existing models of jet formation, propagation, and Faraday rotation in 3C 84.Conclusions. The findings of our investigation into di fferent flow geometries and black hole spins support an advection-dominated accretion flow in a magnetically arrested state around a rapidly rotating supermassive black hole as a model of the jet-launching system in the core of 3C 84. However, systematic uncertainties due to the limited (u, v)-coverage, however, cannot be ignored. Our upcoming work using new EHT data, which offer full imaging capabilities, will shed more light on the compact region of 3C 84
SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues
Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to
genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility
and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component.
Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci
(eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene),
including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform
genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer
SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the
diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
First Sagittarius A* Event Horizon Telescope Results. VIII. Physical Interpretation of the Polarized Ring
In a companion paper, we present the first spatially resolved polarized image of Sagittarius A* on event horizon scales, captured using the Event Horizon Telescope, a global very long baseline interferometric array operating at a wavelength of 1.3 mm. Here we interpret this image using both simple analytic models and numerical general relativistic magnetohydrodynamic (GRMHD) simulations. The large spatially resolved linear polarization fraction (24%ā28%, peaking at ā¼40%) is the most stringent constraint on parameter space, disfavoring models that are too Faraday depolarized. Similar to our studies of M87*, polarimetric constraints reinforce a preference for GRMHD models with dynamically important magnetic fields. Although the spiral morphology of the polarization pattern is known to constrain the spin and inclination angle, the time-variable rotation measure (RM) of Sgr A* (equivalent to ā46Ā° Ā± 12Ā° rotation at 228 GHz) limits its present utility as a constraint. If we attribute the RM to internal Faraday rotation, then the motion of accreting material is inferred to be counterclockwise, contrary to inferences based on historical polarized flares, and no model satisfies all polarimetric and total intensity constraints. On the other hand, if we attribute the mean RM to an external Faraday screen, then the motion of accreting material is inferred to be clockwise, and one model passes all applied total intensity and polarimetric constraints: a model with strong magnetic fields, a spin parameter of 0.94, and an inclination of 150Ā°. We discuss how future 345 GHz and dynamical imaging will mitigate our present uncertainties and provide additional constraints on the black hole and its accretion flow
The persistent shadow of the supermassive black hole of M 87
In April 2019, the Event Horizon Telescope (EHT) Collaboration reported the first-ever event-horizon-scale images of a black hole, resolving the central compact radio source in the giant elliptical galaxy M 87. These images reveal a ring with a southerly brightness distribution and a diameter of ā¼42 Ī¼as, consistent with the predicted size and shape of a shadow produced by the gravitationally lensed emission around a supermassive black hole. These results were obtained as part of the April 2017 EHT observation campaign, using a global very long baseline interferometric radio array operating at a wavelength of 1.3 mm. Here, we present results based on the second EHT observing campaign, taking place in April 2018 with an improved array, wider frequency coverage, and increased bandwidth. In particular, the additional baselines provided by the Greenland telescope improved the coverage of the array. Multiyear EHT observations provide independent snapshots of the horizon-scale emission, allowing us to confirm the persistence, size, and shape of the black hole shadow, and constrain the intrinsic structural variability of the accretion flow. We have confirmed the presence of an asymmetric ring structure, brighter in the southwest, with a median diameter of 43.3ā3.1+1.5ā
Ī¼as. The diameter of the 2018 ring is remarkably consistent with the diameter obtained from the previous 2017 observations. On the other hand, the position angle of the brightness asymmetry in 2018 is shifted by about 30Ā° relative to 2017. The perennial persistence of the ring and its diameter robustly support the interpretation that the ring is formed by lensed emission surrounding a Kerr black hole with a mass ā¼6.5ā
Ćā
109āMā. The significant change in the ring brightness asymmetry implies a spin axis that is more consistent with the position angle of the large-scale jet
Ascertaining Free Histidine from Mixtures with Histidine-Containing Proteins Using Time-Resolved Photoluminescence Spectroscopy
The use of photoluminescent probes
for differentiating free amino
acids from biomolecules containing the same amino acids is challenging.
Photoluminescent probes generally present similar emission spectra
when in the presence of either free-amino acids or protein containing
those same amino acids. Probes based on cyclometalated iridiumĀ(III)
complexes IrĀ(L)<sub>2</sub>(sol)<sub>2</sub> (where L is 2-phenylpyridine,
2-(2,4-difluorophenyl)Āpyridine, or benzoĀ[<i>h</i>]Āquinolone,
and sol is a solvent molecule) present long-lived emission when bound
to histidine. This emission is tuned by the microenvironment around
the complex and therefore its lifetime is different for free histidine
(487 ns) than from histidine-containing proteins such as bovine serum
albumin (average lifetime > 700 ns). As a proof-of-concept we demonstrate
that free histidine can be discerned from a mixture with histidine-containing
proteins by using time-resolved photoluminescence decays. In the presence
of multiple sources of histidine, iridiumĀ(III) probes display a multiexponential
decay, which can be fitted by nonlinear least-squares methods to separate
the different components. Because the pre-exponential factor of the
487 ns lifetime is proportional to the concentration of free histidine,
we can use it to assess the amount of free histidine in solution even
in the presence of proteins such as bovine serum albumin. We also
show that iridiumĀ(III) probes displaying different photoluminescence
maxima can be produced by modifying the ancillary ligands of the metal
complex
- ā¦