77 research outputs found
Grasping trapezoidal objects
When grasping rectangular or circular objects with a precision grip the digits close in on the object in opposite directions. In doing so the digits move perpendicular to the local surface orientation as they approach opposite sides of the object. This perpendicular approach is advantageous for accurately placing the digits. Trapezoidal objects have non-parallel surfaces so that moving the digits in opposite directions would make the digits approach the contact surfaces at an angle that is not 90Β°. In this study we examined whether this happens, or whether subjects tend to approach trapezoidal objectsβ surfaces perpendicularly. We used objects of different sizes and with different surface slants. Subjects tended to approach the objectβs surfaces orthogonally, suggesting that they aim for an optimal precision of digit placement rather than simply closing their hand as it reaches the object
Grasping and hitting moving objects
Some experimental evidence suggests that grasping should be regarded as independent control of the thumb and the index finger (digit control hypothesis). To investigate this further, we compared how the tips of the thumb and the index finger moved in space when grasping spheres to how they moved when they were hitting the sphere using only one digit. In order to make the tasks comparable, we designed the experiment in such a way that subjects contacted the spheres in about the same way in the hitting task as when grasping it. According to the digit control hypothesis, the two tasks should yield similar digit trajectories in space. People hit and grasped stationary and moving spheres. We compared the similarity of the digits' trajectories across the two tasks by evaluating the time courses of the paths of the average of the thumb and the index finger. These paths were more similar across tasks than across sphere motion, supporting the notion that grasping is not controlled fundamentally differently than hitting. Β© 2011 The Author(s)
Grasping Kinematics from the Perspective of the Individual Digits: A Modelling Study
Grasping is a prototype of human motor coordination. Nevertheless, it is not known what determines the typical movement patterns of grasping. One way to approach this issue is by building models. We developed a model based on the movements of the individual digits. In our model the following objectives were taken into account for each digit: move smoothly to the preselected goal position on the object without hitting other surfaces, arrive at about the same time as the other digit and never move too far from the other digit. These objectives were implemented by regarding the tips of the digits as point masses with a spring between them, each attracted to its goal position and repelled from objects' surfaces. Their movements were damped. Using a single set of parameters, our model can reproduce a wider variety of experimental findings than any previous model of grasping. Apart from reproducing known effects (even the angles under which digits approach trapezoidal objects' surfaces, which no other model can explain), our model predicted that the increase in maximum grip aperture with object size should be greater for blocks than for cylinders. A survey of the literature shows that this is indeed how humans behave. The model can also adequately predict how single digit pointing movements are made. This supports the idea that grasping kinematics follow from the movements of the individual digits
Grasping the changes seen in older adults when reaching for objects of varied texture.
Old age is associated with reduced mobility of the hand. To investigate age related decline when reaching-to-lift an object we used sophisticated kinematic apparatus to record reaches carried out by healthy older and younger participants. Three objects of different widths were placed at three different distances, with objects having either a high or low friction surface (i.e. rough or slippery). Older participants showed quantitative differences to their younger counterparts - movements were slower and peak speed did not scale with object distance. There were also qualitative differences with older adults showing a greater propensity to stop the hand and adjust finger position before lifting objects. The older participants particularly struggled to lift wide slippery objects, apparently due to an inability to manipulate their grasp to provide the level of precision necessary to functionally enclose the object. These data shed light on the nature of age related changes in reaching-to-grasp movements and establish a powerful technique for exploring how different product designs will impact on prehensile behavior
Effect of terminal accuracy requirements on temporal gaze-hand coordination during fast discrete and reciprocal pointings
Background\ud
\ud
Rapid discrete goal-directed movements are characterized by a well known coordination pattern between the gaze and the hand displacements. The gaze always starts prior to the hand movement and reaches the target before hand velocity peak. Surprisingly, the effect of the target size on the temporal gaze-hand coordination has not been directly investigated. Moreover, goal-directed movements are often produced in a reciprocal rather than in a discrete manner. The objectives of this work were to assess the effect of the target size on temporal gaze-hand coordination during fast 1) discrete and 2) reciprocal pointings.\ud
\ud
Methods\ud
\ud
Subjects performed fast discrete (experiment 1) and reciprocal (experiment 2) pointings with an amplitude of 50 cm and four target diameters (7.6, 3.8, 1.9 and 0.95 cm) leading to indexes of difficulty (ID = log2[2A/D]) of 3.7, 4.7, 5.7 and 6.7 bits. Gaze and hand displacements were synchronously recorded. Temporal gaze-hand coordination parameters were compared between experiments (discrete and reciprocal pointings) and IDs using analyses of variance (ANOVAs).\ud
\ud
Results\ud
\ud
Data showed that the magnitude of the gaze-hand lead pattern was much higher for discrete than for reciprocal pointings. Moreover, while it was constant for discrete pointings, it decreased systematically with an increasing ID for reciprocal pointings because of the longer duration of gaze anchoring on target.\ud
\ud
Conclusion \ud
\ud
Overall, the temporal gaze-hand coordination analysis revealed that even for high IDs, fast reciprocal pointings could not be considered as a concatenation of discrete units. Moreover, our data clearly illustrate the smooth adaptation of temporal gaze-hand coordination to terminal accuracy requirements during fast reciprocal pointings. It will be interesting for further researches to investigate if the methodology used in the experiment 2 allows assessing the effect of sensori-motor deficits on gaze-hand coordination
Active Vision during Action Execution, Observation and Imagery: Evidence for Shared Motor Representations
The concept of shared motor representations between action execution and various covert conditions has been demonstrated through a number of psychophysiological modalities over the past two decades. Rarely, however, have
researchers considered the congruence of physical, imaginary and observed movement markers in a single paradigm and never in a design where eye movement metrics are the markers. In this study, participants were required to perform a forward reach and point Fittsβ Task on a digitizing tablet whilst wearing an eye movement system. Gaze metrics were used to compare behaviour congruence between action execution, action observation, and guided and unguided movement imagery conditions. The data showed that participants attended the same task-related visual cues between conditions but the strategy was different. Specifically, the number of fixations was significantly different between action execution and all covert conditions. In addition, fixation duration was congruent between action execution and action observation only, and
both conditions displayed an indirect Fittsβ Law effect. We therefore extend the understanding of the common motor representation by demonstrating, for the first time, common spatial eye movement metrics across simulation conditions
and some specific temporal congruence for action execution and action observation. Our findings suggest that action
observation may be an effective technique in supporting motor processes. The use of video as an adjunct to physical
techniques may be beneficial in supporting motor planning in both performance and clinical rehabilitation environments
On the relation between action selection and movement control in 5- to 9-month-old infants
Although 5-month-old infants select action modes that are adaptive to the size of the object (i.e., one- or two-handed reaching), it has largely remained unclear whether infants of this age control the ensuing movement to the size of the object (i.e., scaling of the aperture between hands). We examined 5-, 7-, and 9-month-oldsβ reaching behaviors to gain more insight into the developmental changes occurring in the visual guidance of action mode selection and movement control, and the relationship between these processes. Infants were presented with a small set of objects (i.e., 2, 3, 7, and 8Β cm) and a large set of objects (i.e., 6, 9, 12, and 15Β cm). For the first set of objects, it was found that the infants more often performed two-handed reaches for the larger objects based on visual information alone (i.e., before making contact with the object), thus showing adaptive action mode selection relative to object size. Kinematical analyses of the two-handed reaches for the second set of objects revealed that inter-trial variance in aperture between the hands decreased with the approach toward the object, indicating that infantsβ reaching is constrained by the object. Subsequent analysis showed that between hand aperture scaled to object size, indicating that visual control of the movement is adjusted to object size in infants as young as 5Β months. Individual analyses indicated that the two processes were not dependent and followed distinct developmental trajectories. That is, adaptive selection of an action mode was not a prerequisite for appropriate aperture scaling, and vice versa. These findings are consistent with the idea of two separate and independent visual systems (Milner and Goodale in Neuropsychologia 46:774β785, 2008) during early infancy
Nobody Is Perfect: ERP Effects Prior to Performance Errors in Musicians Indicate Fast Monitoring Processes
Background: One central question in the context of motor control and action monitoring is at what point in time errors can be detected. Previous electrophysiological studies investigating this issue focused on brain potentials elicited after erroneous responses, mainly in simple speeded response tasks. In the present study, we investigated brain potentials before the commission of errors in a natural and complex situation. Methodology/Principal Findings: Expert pianists bimanually played scales and patterns while the electroencephalogram (EEG) was recorded. Event-related potentials (ERPs) were computed for correct and incorrect performances. Results revealed differences already 100 ms prior to the onset of a note (i.e., prior to auditory feedback). We further observed that erroneous keystrokes were delayed in time and pressed more slowly. Conclusions: Our data reveal neural mechanisms in musicians that are able to detect errors prior to the execution of erroneous movements. The underlying mechanism probably relies on predictive control processes that compare the predicted outcome of an action with the action goal
Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design
<p>Abstract</p> <p>Background</p> <p>It is the purpose of this article to identify and review criteria that rehabilitation technology should meet in order to offer arm-hand training to stroke patients, based on recent principles of motor learning.</p> <p>Methods</p> <p>A literature search was conducted in PubMed, MEDLINE, CINAHL, and EMBASE (1997β2007).</p> <p>Results</p> <p>One hundred and eighty seven scientific papers/book references were identified as being relevant. Rehabilitation approaches for upper limb training after stroke show to have shifted in the last decade from being analytical towards being focussed on environmentally contextual skill training (task-oriented training). Training programmes for enhancing motor skills use patient and goal-tailored exercise schedules and individual feedback on exercise performance. Therapist criteria for upper limb rehabilitation technology are suggested which are used to evaluate the strengths and weaknesses of a number of current technological systems.</p> <p>Conclusion</p> <p>This review shows that technology for supporting upper limb training after stroke needs to align with the evolution in rehabilitation training approaches of the last decade. A major challenge for related technological developments is to provide engaging patient-tailored task oriented arm-hand training in natural environments with patient-tailored feedback to support (re) learning of motor skills.</p
- β¦