4 research outputs found

    Meals, Microbiota and Mental Health in Children and Adolescents (MMM-Study) : A protocol for an observational longitudinal case-control study

    Get PDF
    Funding Information: This manuscript was partially funded by grant European Union's Horizon 2020 research and innovation program, grant GEMMA 825033 as well as by the University of Iceland Research Fund and The Landspitali University Hospital Scientific Fund. Publisher Copyright: © 2022 Asbjornsdottir et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Recent studies indicate that the interplay between diet, intestinal microbiota composition, and intestinal permeability can impact mental health. More than 10% of children and adolescents in Iceland suffer from mental disorders, and rates of psychotropics use are very high. The aim of this novel observational longitudinal case-control study, “Meals, Microbiota and Mental Health in Children and Adolescents (MMM-Study)” is to contribute to the promotion of treatment options for children and adolescents diagnosed with mental disorders through identification of patterns that may affect the symptoms. All children and adolescents, 5-15 years referred to the outpatient clinic of the Child and Adolescent Psychiatry Department at The National University Hospital in Reykjavik, Iceland, for one year (n≈150) will be invited to participate. There are two control groups, i.e., sex-matched children from the same postal area (n≈150) and same parent siblings (full siblings) in the same household close in age +/- 3 years (n<150). A three-day food diary, rating scales for mental health, and multiple questionnaires will be completed. Biosamples (fecal-, urine-, saliva-, blood samples, and buccal swab) will be collected and used for 16S rRNA gene amplicon sequencing of the oral and gut microbiome, measurements of serum factors, quantification of urine metabolites and host genotype, respectively. For longitudinal follow-up, data collection will be repeated after three years in the same groups. Integrative analysis of diet, gut microbiota, intestinal permeability, serum metabolites, and mental health will be conducted applying bioinformatics and systems biology approaches. Extensive population-based data of this quality has not been collected before, with collection repeated in three years' time, contributing to the high scientific value. The MMM-study follows the “Strengthening the Reporting of Observational Studies in Epidemiology” (STROBE) guidelines. Approval has been obtained from the Icelandic National Bioethics Committee, and the study is registered with Clinicaltrials.gov. The study will contribute to an improved understanding of the links between diet, gut microbiota and mental health in children through good quality study design by collecting information on multiple components, and a longitudinal approach. Furthermore, the study creates knowledge on possibilities for targeted and more personalized dietary and lifestyle interventions in subgroups.Peer reviewe

    Microbiological Analysis in Three Diverse Natural Geothermal Bathing Pools in Iceland

    Get PDF
    Natural thermal bathing pools contain geothermal water that is very popular to bathe in but the water is not sterilized, irradiated or treated in any way. Increasing tourism in Iceland will lead to increasing numbers of bath guests, which can in turn affect the microbial flora in the pools and therefore user safety. Today, there is no legislation that applies to natural geothermal pools in Iceland, as the water is not used for consumption and the pools are not defined as public swimming pools. In this study, we conducted a microbiological analysis on three popular but different natural pools in Iceland, located at LĂœsuhĂłll, Hveravellir and Landmannalaugar. Total bacterial counts were performed by flow cytometry, and with plate count at 22 °C, 37 °C and 50 °C. The presence of viable coliforms, Enterococcus spp. and pseudomonads were investigated by growth experiments on selective media. All samples were screened for noroviruses by real time PCR. The results indicate higher fecal contamination in the geothermal pools where the geothermal water flow was low and bathing guest count was high during the day. The number of cultivated Pseudomonas spp. was high (13,000–40,000 cfu/100 mL) in the natural pools, and several strains were isolated and classified as opportunistic pathogens. Norovirus was not detected in the three pools. DNA was extracted from one-liter samples in each pool and analyzed by partial 16S rRNA gene sequencing. Microbial diversity analysis revealed different microbial communities between the pools and they were primarily composed of alpha-, beta- and gammaproteobacteria

    Complete Genome Sequence of the Hyperthermophilic, Piezophilic, Heterotrophic, and Carboxydotrophic Archaeon Thermococcus barophilus MP▿

    No full text
    Thermococcus barophilus is a hyperthermophilic, anaerobic, mixed heterotrophic, and carboxydotrophic euryarchaeon isolated from the deep sea hydrothermal vent Snakepit site on the mid-Atlantic ridge at a depth of 3,550 m. T. barophilus is the first true piezophilic, hyperthermophilic archaeon isolated, having an optimal growth at 40 MPa. Here we report the complete genome sequence of strain MP, the type strain of T. barophilus. The genome data reveal a close proximity with Thermococcus sibiricus, another Thermococcus isolated from the deep biosphere and a possible connection to life in the depths

    The founding charter of the Genomic Observatories Network

    Get PDF
    The co-authors of this paper hereby state their intention to work together to launch the Genomic Observatories Network (GOs Network) for which this document will serve as its Founding Charter. We define a Genomic Observatory as an ecosystem and/or site subject to long-term scientific research, including (but not limited to) the sustained study of genomic biodiversity from single-celled microbes to multicellular organisms.An international group of 64 scientists first published the call for a global network of Genomic Observatories in January 2012. The vision for such a network was expanded in a subsequent paper and developed over a series of meetings in Bremen (Germany), Shenzhen (China), Moorea (French Polynesia), Oxford (UK), Pacific Grove (California, USA), Washington DC (USA), and London (UK). While this community-building process continues, here we express our mutual intent to establish the GOs Network formally, and to describe our shared vision for its future. The views expressed here are ours alone as individual scientists, and do not necessarily represent those of the institutions with which we are affiliated
    corecore