13 research outputs found

    THE INTERACTION OF HUMAN OSTEOBLAST-LIKE Saos-2 CELLS WITH STAINLESS STEEL AND Si(100) COATED BY SILICALITE 1 FILMS

    Get PDF
    Interaction of osteoblast-like Saos-2 cells with stainless steel and Si(100) covered by a film of densely intergrown silicalite-1 crystals is investigated.  Surface properties  of the films are tuned by synthesis conditions and post-synthetic modifications.  A number of adhered cells is affected by surface morphology and wettability of the film

    THE INTERACTION OF HUMAN OSTEOBLAST-LIKE SAOS-2 CELLS WITH STAINLESS STEEL AND SI(100) COATED BY SILICALITE 1 FILMS

    Get PDF
    Interaction of osteoblast-like Saos-2 cells with stainless steel and Si(100) covered by a film of densely intergrown silicalite-1 crystals is investigated.  Surface properties  of the films are tuned by synthesis conditions and post-synthetic modifications.  A number of adhered cells is affected by surface morphology and wettability of the film.</p

    Application of whey protein isolate in bone regeneration:Effects on growth and osteogenic differentiation of bone-forming cells

    Get PDF
    Recently, milk-derived proteins have attracted attention for applications in the biomedical field such as tissue regeneration. Whey protein isolate (WPI), especially its main component β-lactoglobulin, can modulate immunity and acts as an antioxidant, antitumor, antiviral, and antibacterial agent. There are very few reports of the application of WPI in tissue engineering, especially in bone tissue engineering. In this study, we tested the influence of different concentrations of WPI on behavior of human osteoblast-like Saos-2 cells, human adipose tissue-derived stem cells (ASC), and human neonatal dermal fibroblasts (FIB). The positive effect on growth was apparent for Saos-2 cells and FIB but not for ASC. However, the expression of markers characteristic for early osteogenic cell differentiation [type-I collagen (COL1) and alkaline phosphatase (ALP)] as well as ALP activity, increased dose-dependently in ASC. Importantly, Saos-2 cells were able to deposit calcium in the presence of WPI, even in a proliferation medium without other supplements that support osteogenic cell differentiation. The results indicate that, depending on the cell type, WPI can act as an enhancer of cell proliferation and osteogenic differentiation. Therefore, enrichment of biomaterials for bone regeneration with WPI seems a promising approach, especially due to the low cost of WPI

    Interaction of bone and vascular cells with materials constructed for tissue replacement and drug delivery system

    No full text
    Interactions between biomaterials and cells play an important role in tissue engineering. It has been repeatedly shown that the cell behaviour strongly depends on physical and chemical properties of the material surface. In our study we focused on materials used for the construction of bone implants and replacements to support cell adhesion, growth and osteogenic diferenciation and to lead to an integration between an implant and a bone tissue. First we tested an influence of different micrpattern of fullerens' C60 and composites' C60/Ti films to adhesion of bone cells MG 63, their initial spreading, growth, viability and formation of cytosceletal protein actin. Some of these films were additionally iradiated with Au+ ions, which led to the conversion of some C60 molcules into amorphous carbon (a-C). We confirmed that pattern influenced the distribution of cells without decrease viability. Thus, the production of patterns could be used to direct cell adhesion. In the second study, we also observed the influence of the thickness of coated layer. We found that more selective cell growth can be achieved by depositing of thicker fullerens' film. Our study with osteoblast-like MG 63 cells cultured on PLGA films revealed, that surface coated with chosen components of extracellular matrix (colagen I and..

    Interaction of bone and vascular cells with materials constructed for tissue replacement and drug delivery system

    No full text
    Interactions between biomaterials and cells play an important role in tissue engineering. It has been repeatedly shown that the cell behaviour strongly depends on physical and chemical properties of the material surface. In our study we focused on materials used for the construction of bone implants and replacements to support cell adhesion, growth and osteogenic diferenciation and to lead to an integration between an implant and a bone tissue. First we tested an influence of different micrpattern of fullerens' C60 and composites' C60/Ti films to adhesion of bone cells MG 63, their initial spreading, growth, viability and formation of cytosceletal protein actin. Some of these films were additionally iradiated with Au+ ions, which led to the conversion of some C60 molcules into amorphous carbon (a-C). We confirmed that pattern influenced the distribution of cells without decrease viability. Thus, the production of patterns could be used to direct cell adhesion. In the second study, we also observed the influence of the thickness of coated layer. We found that more selective cell growth can be achieved by depositing of thicker fullerens' film. Our study with osteoblast-like MG 63 cells cultured on PLGA films revealed, that surface coated with chosen components of extracellular matrix (colagen I and..

    Structural and biocompatible characterization of TiC/a:C nanocomposite thin films

    No full text
    In this work, sputtered TiC/amorphous C thin films have been developed in order to be applied as potential barrier coating for interfering of Ti ions from pure Ti or Ti alloy implants. Our experiments were based on magnetron sputtering method, because the vacuum deposition provides great flexibility for manipulating material chemistry and structure, leading to films and coatings with special properties. The films have been deposited on silicon (001) substrates with 300 nm thick oxidized silicon sublayer at 200 °C deposition temperature as model substrate. Transmission electron microscopy has been used for structural investigations. Thin films consisted of ~20 nm TiC columnar crystals embedded by 5 nm thin amorphous carbonmatrix. MG63 osteoblast cells have been applied for in vitro study of TiC nanocomposites. The cell culture tests give strong evidence of thin films biocompatibility

    Mechanical behavior of bioactive TiC nanocomposite thin films

    No full text
    Carbon-based nanocomposite thin films have large application potential because they possess unique mechanical properties, especially high hardness, high elasticity, and a low widely adjustable friction coefficient. In this work, relatively easy preparation of the nanocomposite Ti and C system with good mechanical properties and bioactivity was showed. Formation of physical and mechanical processes, relationship between the evolving structure and other properties of TiC films were studied. The films were deposited on oxidized silicon substrates by dc magnetron sputtering of Ti and C targets in argon and nitrogen at different temperatures between 25°C and 800°C. The composite films consisted of metallic nanocrystalls embedded in a carbon matrix. Highest hardness ~ 18 GPa and reduced modulus of elasticity ~ 205 GPa were obtained when the crystalline nanoparticles were separated by 2-3 nm thin carbon matrix consisting of amorphous and graphitelike carbon phases. In these films the H/E ratio in the both cases is ~ 0,1. Bioactivity studies were carried out on human osteoblast-like cell line MG-63. The number of initially adhering cells on day 7 after seeding was significantly higher on the TiC surface than on the control culture dishes. Good biocompatibility and bioadhesion of these surfaces are attained by a favourable combination of surface roughness and chemistry

    Electrical activity of ferroelectric biomaterials and its effects on the adhesion, growth and enzymatic activity of human osteoblast-like cells

    No full text
    Ferroelectrics have been, among others, studied as electroactive implant materials. Previous investigations have indicated that such implants induce improved bone formation. If a ferroelectric is immersed in a liquid, an electric double layer and a diffusion layer are formed at the interface. This is decisive for protein adsorption and bioactive behaviour, particularly for the adhesion and growth of cells. The charge distribution can be characterized, in a simplified way, by the zeta potential. We measured the zeta potential in dependence on the surface polarity on poled ferroelectric single crystalline LiNbO3 plates. Both our results and recent results of colloidal probe microscopy indicate that the charge distribution at the surface can be influenced by the surface polarity of ferroelectrics under certain 'ideal' conditions (low ionic strength, non-contaminated surface, very low roughness). However, suggested ferroelectric coatings on the surface of implants are far from ideal: they are rough, polycrystalline, and the body fluid is complex and has high ionic strength. In real cases, it can therefore be expected that there is rather low influence of the sign of the surface polarity on the electric diffusion layer and thus on the specific adsorption of proteins. This is supported by our results from studies of the adhesion, growth and the activity of alkaline phosphatase of human osteoblast-like Saos-2 cells on ferroelectric LiNbO3 plates in vitro. © 2016 IOP Publishing Ltd.15-01558, GACR, Czech Science Foundation; MEYS, Czech Science FoundationCzech Science Foundation [15-01558]; Ministry of Education, Youth and Sports of the Czech Republic [LO1504

    Preparation of highly wettable coatings on Ti-6Al-4V ELI alloy for traumatological implants using micro-arc oxidation in an alkaline electrolyte

    No full text
    Pulsed micro-arc oxidation (MAO) in a strongly alkaline electrolyte (pH>13), consisting of Na2SiO3.9H(2)O and NaOH, was used to form a thin porous oxide coating consisting of two layers differing in chemical and phase composition. The unique procedure, combining MAO and removal of the outer layer by blasting, enables to prepare a coating suitable for application in temporary traumatological implants. A bilayer formed in an alkaline electrolyte environment during the application of MAO enables the formation of a wear-resistant layer with silicon incorporated in the oxide phase. Following the removal of the outer rutile-containing porous layer, the required coating properties for traumatological applications were determined. The prepared surfaces were characterized by scanning electron microscopy, X-ray diffraction patterns, X-ray photoelectron spectroscopy, atomic force microscopy and contact angle measurements. Cytocompatibility was evaluated using human osteoblast-like Saos-2 cells. The newly-developed surface modifications of Ti-6Al-4V ELI alloy performed satisfactorily in all cellular tests in comparison with MAO-untreated alloy and standard tissue culture plastic. High cell viability was supported, but the modifications allowed only relatively slow cell proliferation, and showed only moderate osseointegration potential without significant support for matrix mineralization. Materials with these properties are promising for utilization in temporary traumatological implants.Web of Science101art. no. 1978
    corecore