16 research outputs found

    Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis

    Get PDF
    Background: Influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus are the most common viruses associated with acute lower respiratory infections in young children (<5 years) and older people (≥65 years). A global report of the monthly activity of these viruses is needed to inform public health strategies and programmes for their control. Methods: In this systematic analysis, we compiled data from a systematic literature review of studies published between Jan 1, 2000, and Dec 31, 2017; online datasets; and unpublished research data. Studies were eligible for inclusion if they reported laboratory-confirmed incidence data of human infection of influenza virus, respiratory syncytial virus, parainfluenza virus, or metapneumovirus, or a combination of these, for at least 12 consecutive months (or 52 weeks equivalent); stable testing practice throughout all years reported; virus results among residents in well-defined geographical locations; and aggregated virus results at least on a monthly basis. Data were extracted through a three-stage process, from which we calculated monthly annual average percentage (AAP) as the relative strength of virus activity. We defined duration of epidemics as the minimum number of months to account for 75% of annual positive samples, with each component month defined as an epidemic month. Furthermore, we modelled monthly AAP of influenza virus and respiratory syncytial virus using site-specific temperature and relative humidity for the prediction of local average epidemic months. We also predicted global epidemic months of influenza virus and respiratory syncytial virus on a 5° by 5° grid. The systematic review in this study is registered with PROSPERO, number CRD42018091628. Findings: We initally identified 37 335 eligible studies. Of 21 065 studies remaining after exclusion of duplicates, 1081 full-text articles were assessed for eligibility, of which 185 were identified as eligible. We included 246 sites for influenza virus, 183 sites for respiratory syncytial virus, 83 sites for parainfluenza virus, and 65 sites for metapneumovirus. Influenza virus had clear seasonal epidemics in winter months in most temperate sites but timing of epidemics was more variable and less seasonal with decreasing distance from the equator. Unlike influenza virus, respiratory syncytial virus had clear seasonal epidemics in both temperate and tropical regions, starting in late summer months in the tropics of each hemisphere, reaching most temperate sites in winter months. In most temperate sites, influenza virus epidemics occurred later than respiratory syncytial virus (by 0·3 months [95% CI −0·3 to 0·9]) while no clear temporal order was observed in the tropics. Parainfluenza virus epidemics were found mostly in spring and early summer months in each hemisphere. Metapneumovirus epidemics occurred in late winter and spring in most temperate sites but the timing of epidemics was more diverse in the tropics. Influenza virus epidemics had shorter duration (3·8 months [3·6 to 4·0]) in temperate sites and longer duration (5·2 months [4·9 to 5·5]) in the tropics. Duration of epidemics was similar across all sites for respiratory syncytial virus (4·6 months [4·3 to 4·8]), as it was for metapneumovirus (4·8 months [4·4 to 5·1]). By comparison, parainfluenza virus had longer duration of epidemics (6·3 months [6·0 to 6·7]). Our model had good predictability in the average epidemic months of influenza virus in temperate regions and respiratory syncytial virus in both temperate and tropical regions. Through leave-one-out cross validation, the overall prediction error in the onset of epidemics was within 1 month (influenza virus −0·2 months [−0·6 to 0·1]; respiratory syncytial virus 0·1 months [−0·2 to 0·4]). Interpretation: This study is the first to provide global representations of month-by-month activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus. Our model is helpful in predicting the local onset month of influenza virus and respiratory syncytial virus epidemics. The seasonality information has important implications for health services planning, the timing of respiratory syncytial virus passive prophylaxis, and the strategy of influenza virus and future respiratory syncytial virus vaccination. Funding: European Union Innovative Medicines Initiative Respiratory Syncytial Virus Consortium in Europe (RESCEU)

    Programa experimental de despellejado, desarticulación y fractura de autopodios de mamíferos

    No full text
    Un equipo de arqueólogos hispano argentinos muestra los pasos seguidos para trocear manos y pies de distintos mamíferos, como armadillos, toros, cerdos o chimpancés, usando instrumentos de piedra. Descripción de los procesos y el análisis de las herramientas empleadas. Ideal para fines tanto docentes como de investigación.Fil: Ramos, Alonso. No especifíca;Fil: Arribas, Alfonso. No especifíca;Fil: Batres, Daniel Alejandro. No especifíca;Fil: Chiarelli, Pablo. No especifíca;Fil: Cirigliano, Natalia A.. No especifíca;Fil: Díez, Juan Carlos. No especifíca;Fil: Lanata, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Diversidad Cultural y Procesos de Cambio. Universidad Nacional de Río Negro. Instituto de Investigaciones en Diversidad Cultural y Procesos de Cambio; ArgentinaFil: Navazo, Marta. No especifíca;Fil: Pérez, Alberto. No especifíca

    Genetic contributions to lupus nephritis in a multi-ethnic cohort of systemic lupus erythematous patients

    Get PDF
    <div><p>Objective</p><p>African Americans, East Asians, and Hispanics with systemic lupus erythematous (SLE) are more likely to develop lupus nephritis (LN) than are SLE patients of European descent. The etiology of this difference is not clear, and this study was undertaken to investigate how genetic variants might explain this effect.</p><p>Methods</p><p>In this cross-sectional study, 1244 SLE patients from multiethnic case collections were genotyped for 817,810 single-nucleotide polymorphisms (SNPs) across the genome. Continental genetic ancestry was estimated utilizing the program ADMIXTURE. Gene-based testing and pathway analysis was performed within each ethnic group and meta-analyzed across ethnicities. We also performed candidate SNP association tests with SNPs previously established as risk alleles for SLE, LN, and chronic kidney disease (CKD). Association testing and logistic regression models were performed with LN as the outcome, adjusted for continental ancestries, sex, disease duration, and age.</p><p>Results</p><p>We studied 255 North European, 263 South European, 238 Hispanic, 224 African American and 264 East Asian SLE patients, of whom 606 had LN (48.7%). In genome-wide gene-based and candidate SNP analyses, we found distinct genes, pathways and established risk SNPs associated with LN for each ethnic group. Gene-based analyses showed significant associations between variation in <i>ZNF546</i> (p = 1.0E-06), <i>TRIM15</i> (p = 1.0E-06), and <i>TRIMI0</i> (p = 1.0E-06) and LN among South Europeans, and <i>TTC34</i> (p = 8.0E-06) was significantly associated with LN among Hispanics. The SNP rs8091180 in <i>NFATC1</i> was associated with LN (OR 1.43, p = 3.3E-04) in the candidate SNP meta-analysis with the highest OR among African-Americans (OR 2.17, p = 0.0035).</p><p>Conclusion</p><p>Distinct genetic factors are associated with the risk of LN in SLE patients of different ethnicities. CKD risk alleles may play a role in the development of LN in addition to SLE-associated risk variants. These findings may further explain the clinical heterogeneity of LN risk and response to therapy observed between different ethnic groups.</p></div
    corecore