19 research outputs found

    A new multitest correction (SGoF) that increases its statistical power when increasing the number of tests

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The detection of true significant cases under multiple testing is becoming a fundamental issue when analyzing high-dimensional biological data. Unfortunately, known multitest adjustments reduce their statistical power as the number of tests increase. We propose a new multitest adjustment, based on a sequential goodness of fit metatest (SGoF), which increases its statistical power with the number of tests. The method is compared with Bonferroni and FDR-based alternatives by simulating a multitest context via two different kinds of tests: 1) one-sample t-test, and 2) homogeneity G-test.</p> <p>Results</p> <p>It is shown that SGoF behaves especially well with small sample sizes when 1) the alternative hypothesis is weakly to moderately deviated from the null model, 2) there are widespread effects through the family of tests, and 3) the number of tests is large.</p> <p>Conclusion</p> <p>Therefore, SGoF should become an important tool for multitest adjustment when working with high-dimensional biological data.</p

    Metabolomic Identification of Subtypes of Nonalcoholic Steatohepatitis

    No full text
    BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is a consequence of defects in diverse metabolic pathways that involve hepatic accumulation of triglycerides. Features of these aberrations might determine whether NAFLD progresses to nonalcoholic steatohepatitis (NASH). We investigated whether the diverse defects observed in patients with NAFLD are caused by different NAFLD subtypes with specific serum metabolomic profiles, and whether these can distinguish patients with NASH from patients with simple steatosis. METHODS: We collected liver and serum from methionine adenosyltransferase 1a knockout (MAT1A-KO) mice, which have chronically low levels of hepatic S-adenosylmethionine (SAMe) and spontaneously develop steatohepatitis, as well as C57Bl/6 mice (controls); the metabolomes of all samples were determined. We also analyzed serum metabolomes of 535 patients with biopsy-proven NAFLD (353 with simple steatosis and 182 with NASH) and compared them with serum metabolomes of mice. MAT1A-KO mice were also given SAMe (30 mg/kg/day for 8 weeks); liver samples were collected and analyzed histologically for steatohepatitis. RESULTS: Livers of MAT1A-KO mice were characterized by high levels of triglycerides, diglycerides, fatty acids, ceramides, and oxidized fatty acids, as well as low levels of SAMe and downstream metabolites. There was a correlation between liver and serum metabolomes. We identified a serum metabolomic signature associated with MAT1A-KO mice that also was present in 49% of the patients; based on this signature, we identified 2 NAFLD subtypes. We identified specific panels of markers that could distinguish patients with NASH from patients with simple steatosis for each subtype of NAFLD. Administration of SAMe reduced features of steatohepatitis in MAT1A-KO mice. CONCLUSIONS: In an analysis of serum metabolomes of patients with NAFLD and MAT1A-KO mice with steatohepatitis, we identified 2 major subtypes of NAFLD and markers that differentiate steatosis from NASH in each subtype. These might be used to monitor disease progression and identify therapeutic targets for patients
    corecore