30 research outputs found

    Methodology to quantify clogging coefficients for grated inlets. Application to SANT MARTI catchment (Barcelona)

    Get PDF
    Within the drainage system of a city, the set of inlets is in charge of taking the runoff produced by local storms to the stormwater/sewer. In the drainage system design the selection of appropriate inlet models and their location is one of the fundamental aspects. The hydraulics of these inlets has received great attention within the last years; however, few inlet makers provide the hydraulic capacity of their products. In addition, these data usually consider clean water, while in reality, numerous inlets can be either totally or partially clogged. This aspect should be kept in mind within the design process. In this paper, a methodology to consider the hydraulic effects of clogging phenomena is presented. The work started from a visual inspection of the grated inlets throughout the urban catchment of Sant Martí, Barcelona, as a means of identifying clogging patterns, their repetitive forms and their associated frequency. After that, clogged patterns were reproduced in laboratory testing of typical inlets types, thereby obtaining the real quantity of water that could be captured by each of them. It was shown that the same expression employed to describe the efficiency of clean inlets can be used to assess the efficiency of those clogged. A reduction factor in terms of hydraulic capacity and related to each clogging pattern has been defined for use in hydraulic studies of runoff along streets. Finally, the paper compares the obtained results in terms of clogging coefficient with another experimental campaign carried out in other catchment of the city

    Methodology for the damage assessment of vehicles exposed to flooding in urban areas

    Get PDF
    Within urban areas, humans carry out a great diversity of activities, and some of them require the use of vehicles. Floods, especially in urban areas, can generate significant tangible direct damages to vehicles themselves and to the urban elements in case of loss of stability and collision, which cannot be dismissed. In this paper, after a state-of-the-art review on damage curves for vehicles, a methodology to assess the direct economic impact for vehicles exposed to flooding has been described, and applied within a study carried out in the framework of the BINGO H2020 EU Project. Only three different studies focused on damages to vehicles in contact with floodwater have been found. Contrasting damage curves for vehicles are found when comparing the three approaches, however, the ones proposed by the U.S. Army Corps of Engineers (USACE) offer a high level of completeness and accuracy. Moreover, USACE''s development is the most current research and all the steps for the development of the damage curves are comprehensively described. Finally, after the description of a detailed methodology for flood damage mapping for vehicles, a procedure to evaluate the Expected Annual Damage for vehicles is offered

    Stability of people exposed to water flows

    Get PDF
    [EN] Our cities are formed by several elements which are exposed to floods of a magnitude according to the importance of the rainfall event and the design of the urban drainage system. The most important components in the cities are the pedestrians who develop various activities during rain events. Focusing on pedestrians, the research on their stability when they are exposed to water flows provides the necessary knowledge to understand and manage the associated hazard for them. In this research, several experiments with humans were carried out in order to determine the stability limits to pedestrians crossing through a water flow in a real scale platform. The results obtained and by comparing those with human stability criteria proposed by other authors and guidelines provide a more restrictive criterion.[ES] Nuestras ciudades están formadas por diversos elementos que están expuestos a inundaciones de magnitudes acordes al evento de lluvia que se produzca y según el diseño del sistema de drenaje urbano. Los elementos más importantes en las ciudades son los peatones, los cuales desarrollan en éstas actividades diversas. Centrando la atención en éstos, la investigación relacionada con su estabilidad cuando se ven sometidos al flujo del agua en la calle proporciona un conocimiento que permite entender y gestionar la peligrosidad asociada a tales situaciones. En el presente estudio se han llevado a cabo experimentos con personas para determinar sus límites de estabilidad, cruzando a través de un flujo de agua en una plataforma de ensayos a escala real. Los resultados obtenidos hasta el momento proporcionan un criterio de peligrosidad mucho más restrictivo que aquellos proporcionados por otros autores o directrices utilizadas en la actualidadEl primer autor del presente artículo desea agradecer al Ministerio de Economía y Competitividad en relación a la colación financiera correspondiente a la Beca FPI2012 con número de referencia BES-2012-051781. Este trabajo se encuentra en el marco del proyecto de investigación Criterios de riesgo a aplicar en el diseño de sistemas de captación ante inundaciones en medio urbano. Este proyecto es financiado por el Ministerio de Economía y Competitividad registrado con el código CGL2011-26958.Martínez-Gomariz, E.; Gómez, M.; Russo, B. (2016). Estabilidad de personas en flujos de agua. Ingeniería del Agua. 20(1):43-58. https://doi.org/10.4995/ia.2016.4231SWORD4358201Abt, S.R., Wittler, R.J., Taylor, A., Love, D.J. (1989). Human stability in a high flood hazard zone. AWRA Water Resour Bull, 25(4), 881-890. doi:10.1111/j.1752-1688.1989.tb05404.xAgricultural and Resource Management Council of Australia and New Zealand (ARMC) (2000). Floodplain Management in Australia. Best Practice Principles and Guidelines. 120. Collingwood, Australia.Belleudy, P. (2004). Risques Hydro-météorologiques, crues et inondations/risque, aléa et vulnérabilité/DDS-TUE364/4. Grenoble, Francia.Clark County Regional Flood Control District (CCRFCD) (1999). Hydrological criteria and drainage design manual. Las Vegas, EEUU.Clavegueram de Barcelona S.A. (CLABSA) (2006). PICBA06, Plan integral de Alcantarillado de Barcelona, 2006.Cox, R.J., Shand, T.D., Blacka, M.J. (2010). Australian Rainfall and Runoff (AR&R). Revision Project 10: Appropriate Safety Criteria For People. Sidney, Australia.Department of Infraestructure Planning and Natural Resouces. New South Wales Goverment (2005). Floodplain Development Manual: the management of flood liable land. 31. Sidney, Australia.Federal Emergency Management Agency (FEMA) (1979). The floodway: a guide for community permit officials. EEUU.Gieck, K. (1981). Manual de Fórmulas Técnicas. Rep. y Servicios de Ingeniería S.A. México, D. F.Gómez, M. (2008). Curso de Hidrología Urbana (7a Edición). Instituto Flumen. Universitat Politècnica de Catalunya, Barcelona, España.Kelman, I. (2002). Physical Flood Vulnerability of Residential Properties in Coastal Eastern England. Tesis Doctoral. Universidad de Cambridge, Reino Unido.Ministerio de Medio Ambiente de España (1996). Guía Técnica para la Clasificación de Presas en Función del Riesgo Potencial. 64.Nanía, L.S. (1999). Metodología numérico experimental para el análisis del riesgo asociado a la escorrentía pluvial en una red de calles. Tesis Doctoral. Universitat Politècnica de Catalunya, Barcelona, España.Ramsbottom, D., Floyd, P., Penning-Rowsell, E. (2006). Flood Risks to People; Phase 2: Project Record. FD 2321/PR. Reino Unido.Regione Liguria. (1993). Piano di bacino stralcio per la difesa idraulica e idrogeologica. Autoritá di Bacino Regionale. Ambito di Bacino No. 7.Reiter, P. (2000). International methods of Risk Analysis, Damage evaluation and social impact studies concerning Dam-Break accidents. EU-Project RESCDAM. Seinäjoki, Finlandia.Rooseboom, A., Basson, M.S., Loots, C.H., Wiggett, J.H., Bosman, J. (1986). Manual on Road Drainage. 2nd Edition. National Transport Commission, Chief Diector of National Road. Republic of south Africa.Russo, B. (2009). Design of surface drainage systems according to hazard criteria related to flooding of urban areas. Tesis Doctoral. Universitat Politècnica de Catalunya, Barcelona, España.Témez, J.R. (1992). Control del desarrollo urbano en las zonas inundables. Monografías del Colegio de Ingenieros de Caminos, Canales y Puertos,10, pp 105-115. Madrid.U.S. Department of the Interior. Bureau of Reclamation (USBR) (1997). Water Measurement Manual. Chapter 7. Washington D.C., EEUU.Wahl, T.L. (2000). Analyzing ADV Data Using WinADV. In: 2000 Joint Conference on Water Resources Engineering and Water Resources Planning & Management. Minneapolis, Minnesota, EEUU, p 10. doi:10.1061/40517(2000)300Wright-Mc Laughlin Engineers (1969). Urban Drainage and Flood Control District. 861. Denver, Colorado, EEUU

    Damage assessment methodology for vehicles exposed to flooding in urban areas

    Get PDF
    [EN] Urban floods may provoke important damages to vehicles, usually not taken into account within most studies related to urban flood risks damage assessments. Herein a methodology to estimate damages to vehicles exposed to urban floods is presented. After a state-of-the-art review, the most recent damage curves for vehicles developed by the U.S. Army Corps of Engineers (USACE, 2009) are presented as the best adaptive and the most comprehensively performed so far. The proposed methodology is applied to the Spanish municipality of Badalona, framed in the H2020 European Project BINGO. In order to conduct this methodology some aspects such as the vehicular distribution are analyzed within the study area. Finally, Expected Annual Damage (EAD) for flooded vehicles is calculated based on inundations related to design storms of different return periods (1, 10, 100 and 500 years).[ES] Las inundaciones urbanas pueden provocar importantes daños a vehículos que, en general, no son considerados en la mayoría de estudios sobre evaluación de riesgo por inundaciones. En este artículo se propone una metodología para la estimación de los daños a vehículos expuestos a inundaciones urbanas. Se presenta inicialmente el estado de la cuestión en lo que se refiere a curvas de daños para vehículos, escogiéndose las desarrolladas por el U.S. Army Corps of Engineers (USACE, 2009) por ser las más recientes, mejor justificadas y presentar mayor adaptabilidad al caso de estudio propuesto. La metodología propuesta se aplica al municipio español de Badalona, en el marco del proyecto europeo H2020 BINGO. Para llevar a cabo dicha metodología se definen y aplican conceptos como la distribución vehicular en toda el área estudiada. Finalmente, se evalúa el Daño Anual Esperado (DAE) relativo a coches a partir de los daños ocasionados por eventos sintéticos de 1, 10, 100 y 500 años de periodo de retorno.El trabajo presentado en este artículo se ha realizado en el marco del proyecto BINGO (Project ID: 641739) financiado por el programa H2020 de la Unión Europea (Acuerdo No. 641739).Martínez Gomariz, E.; Gómez, M.; Russo, B.; Sánchez, P.; Montes, J. (2017). Metodología para la evaluación de daños a vehículos expuestos a inundaciones en zonas urbanas. Ingeniería del Agua. 21(4):247-262. https://doi.org/10.4995/ia.2017.8772SWORD247262214Casas M. C., Rodríguez R., Redaño Á. (2010). Analysis of extreme rainfall in Barcelona using a microscale rain gauge network. Meteorological Applications 17(1): 117-123.Cummins, J.D., Suher, M., and Zanjani, G., 2010. Federal financial exposure to natural catastrophe. In: D. Lucas, ed. Risk Measuring and managing Federal financial risk. Chicago, IL: University of Chicago Press, 61-92.España (2016) Orden HFP/1895/2016, de 14 de diciembre. Boletín Oficial del Estado, 17 de diciembre de 2016, 304, pp. 87816-88485. [online: http://www.boe.es/buscar/doc.php?id=BOE-A-2016-11948].Federal Emergency Management Agency (FEMA). Department of Homeland Security. Mitigation Division. (2015). Multi-hazard Loss Estimation Methodology. Flood Model. Hazus-MH MR5 Technical Manual. Washingtong, D.C., USA. 449p.Francés F., García-Bartual R., Ortiz E., Salazar S., Miralles J. L., Blöschl G., Komma J., Habereder C., Bronstert A., Blume T. (2008). Efficiency of non-structural flood mitigation measures: "room for the river" and "retaining water in the landscape." CRUE Research Report No I-6. 242p.Grigg N. S., Helweg O. J. (1975) State-of-the-art of estimating flood damage in urban areas. J Am Water Resour Assoc 11:379-390.Hammond M. J., Chen A. S., Djordjević S., et al (2015) Urban flood impact assessment: A state-of-the-art review. Urban Water J 12:14-29.Jongman, B., Kreibich, H., Apel, H., Barredo, J. I., Bates, P. D., Feyen, L., Gericke, A., Neal, J., Aerts,J. C. J. H., Ward, P. J. (2012). Comparative flood damage model assessment: towards a European approach. Natural Hazards and Earth System Science, 12(12), 3733-3752.Martínez-Gomariz, E., Gómez, M., Russo, B., Djordjević, S. (2016a) Stability criteria for flooded vehicles: a state-of-the-art review. Journal of Flood Risk Management. 10pp. (record online).Merz, B., Kreibich, H., Schwarze, R., Thieken, A. (2010). Review article "Assessment of economic flood damage." Natural Hazards and Earth System Science, 10(8), 1697-1724.Meyer V., Priest S., Kuhlicke C. (2011) Economic evaluation of structural and non-structural flood risk management measures: examples from the Mulde River. Nat Hazards 62:301-324.Shand T.D., Cox R.J., Blacka M.J., Smith G.P. (2011) Australian Rainfall and Runoff (AR&R). Revision Project 10: Appropriate Safety Criteria for Vehicles (Report Number: P10/S2/020). Sydney, Australia. 7p.U.S. Army Corps of Engineers (USACE) (2009). Economic Guidance Memorandum, 09-04, Generic Depth-Damage Relationships for Vehicles. Washington, D.C, USA. 9p.Velasco, M., Cabello, À., Russo, B. (2015). Flood damage assessment in urban areas. Application to the Raval district of Barcelona using synthetic depth damage curves. Urban Water Journal, 13(4), 426-440White G. F. (1945) Human Adjustment to Floods: A Geographical Approach to the Flood Problem in the United States. PhD Thesis, University of Chicago, USA

    Development and application of depth damage and sealing coefficient curves to estimate urban flooding economic impact on Spanish urban areas

    Get PDF
    [EN] In order to estimate pluvial flood damages within urban areas, a widely element employed are the well-known depth damage curves, which relate water depth to a certain level of damage. This study presents the development carried out in order to obtain depth damage curves tailored for Barcelona city and related to 14 types of properties. Moreover, a conceptual model to transfer outside-of-properties water depths into inside-of-properties water depths. The developed curves, have also been transferred to Badalona municipality and damages for actual flood events have been estimated for both cities. The obtained outcomes have been considered accurate enough, according to the conducted validation process based on the comparison with actual flood claims provided by the Spanish re-insurance company Consorcio de Compensación de Seguros (CCS).[ES] Para la estimación de daños por inundaciones pluviales en zonas urbanas, un elemento ampliamente utilizado son las llamadas curvas de daños, que no son más que la relación de los daños producidos en un tipo de propiedad para un cierto nivel de agua. En este estudio se presenta el desarrollo llevado a cabo para obtener curvas de daños asociadas a 14 tipos de propiedades para la ciudad de Barcelona. Se propone también un modelo conceptual para transferir el calado en las calles al calado en el interior de las propiedades. Las curvas desarrolladas, han sido trasladadas a la ciudad de Badalona y se han estimado los daños de dos eventos reales de inundación para ambas ciudades. Los resultados obtenidos han sido aceptables, de acuerdo con la validación realizada a partir de los datos de indemnizaciones facilitados por el consorcio de compensación de seguros (CCS).Los autores agradecen el apoyo del proyecto RESCCUE y BINGO, ambos financiados por el programa H2020 de la Unión Europea (Acuerdo No. 700174y No. 641739 respectivamente).A los autores les gustaría manifestar también su agradecimiento al Consorcio de Compensación de Seguros (CCS), por su colaboración en la disponibilidad de datos que han permitido validar los resultados obtenidos.Martínez-Gomariz, E.; Guerrero-Hidalga, M.; Russo, B.; Yubero, D.; Gómez, M.; Castán, S. (2019). Desarrollo y aplicación de curvas de daño y estanqueidad para la estimación del impacto económico de las inundaciones en zonas urbanas españolas. Ingeniería del Agua. 23(4):229-245. https://doi.org/10.4995/ia.2019.12137SWORD22924523

    Correction: Russo, B., et al. Assessment of urban flood resilience in barcelona for current and future scenarios. the resccue project. (Sustainability 2020, 12, 5638)

    Get PDF
    The authors would like to make the following corrections about the published paper [1]. The changes are as follows: (1) Replacing Table 4. Reference 1. Russo, B.; Velasco, M.; Locatelli, L.; Sunyer, D.; Yubero, D.; Monjo, R.; Martínez-Gomariz, E.; Forero-Ortiz, E.; Sánchez-Muñoz, D.; Evans, B.; et al. Assessment of Urban Flood Resilience in Barcelona for Current and Future Scenarios. The RESCCUE Project. Sustainability 2020, 12, 5638. [CrossRef]

    Assessment of the resilience of Barcelona urban services in case of flooding. The RESCCUE project

    Full text link
    [ES] En el marco del Proyecto europeo RESCCUE, las proyecciones climáticas para la ciudad de Barcelona muestran aumentos significativos de las intensidades máximas de precipitación para el horizonte del 2071-2100. En este trabajo se presenta la evaluación de la resiliencia de los servicios urbanos de la ciudad frente a episodios de inundación para condiciones de lluvia actuales y futuras. El uso de modelos sectoriales e integrados ha permitido valorar la respuesta del sistema de drenaje de la ciudad tanto a nivel de sistema de alcantarillado subterráneo como a nivel superficial analizando el comportamiento hidráulico del conjunto de las superficies urbanas (calles, plazas, parques, etc.). Por otro lado, los parámetros asociados a las inundaciones superficiales (extensión de las zonas inundables, calado y velocidad) han sido empleados para estimar potenciales afectaciones futuras en otros servicios urbanos estratégicos como el tráfico superficial, el sistema eléctrico y el sistema de recogida de residuos.[EN] Within the framework of the European RESCCUE Project, climate projections for the city of Barcelona show significant increases in maximum rainfall intensities for the 2071-2100 horizon. This paper presents the evaluation of the resilience of urban services in the city against flood episodes for current and future rainfall conditions. The use of sectorial and integrated models allows to assess the response of the city’s drainage system both at the underground sewer system level and at the surface level by analyzing the hydraulic behavior of all urban surfaces (streets, squares, parks, etc.). On the other hand, the parameters associated with surface flooding (extension of flood areas, flow depth and velocity) can be used to estimate potential impacts on other strategic urban services such as surface traffic, the electrical system and the waste collection service.Proyecto RESCCUE (RESilience to cope with Climate Change in Urban arEas - a multisectorial approach focusing on water), financiado por el programa H2020 de la Unión Europea (Acuerdo No. 700174)Russo, B.; Velasco, M.; Monjo, R.; Martínez-Gomariz, E.; Sánchez, D.; Domínguez, JL.; Gabàs, A.... (2020). Evaluación de la resiliencia de los servicios urbanos frente a episodios de inundación en Barcelona. El Proyecto RESCCUE. Ingeniería del agua. 24(2):101-118. https://doi.org/10.4995/ia.2020.12179OJS101118242Ecologia Urbana. 2018. Pla Clima 2018-2030. Ajuntament de Barcelona.Evans, B. 2017. Deliverable 3.1. Selection of methods for quantification of impacts of identified hazards. Deliverable 3.1. RESCCUE Project. Grant Agreement No. 700174. Disponible en http://www.resccue.euEvans, B. 2019. Deliverable 3.4. Impact assessments of multiple hazards in case study areas. Deliverable 3.4. RESCCUE Project. Grant Agreement No. 700174. Disponible en http://www.resccue.euFederal Emergency Management Agency (FEMA). 2009. Multi-Hazard Loss Estimation Methodology, Flood Model: Hazus-MH MR4 Technical Manual. 2009th ed. Disponible en https://www.fema.gov/media-library-data/20130726-1820-25045-8292/hzmh2_1_fl_tm.pdf.Martínez-Gomariz, E., Gómez, M., Russo, B. 2016. Estabilidad de personas en flujos de agua. Ingeniería del agua, 20,(1), 43-58. https://doi.org/10.4995/ia.2016.4231Martínez-Gomariz, E., Gómez, M., Russo, B. 2017. A new experiments-based methodology to obtain the stability threshold for any real vehicle exposed to flooding. Urban Water Journal, 14(9), 930-939. https://doi.org/10.1080/1573062X.2017.1301501Martínez-Gomariz, E., Gómez, M., Russo, B. 2018a. Stability criteria for flooded vehicles: A state of the art review. Journal of Flood Risk Management, 11, S817-S826. https://doi.org/10.1111/jfr3.12262Martínez‐Gomariz, E., Gómez, M., Russo, B., Sánchez, P., Montes, J. A. 2018b. Methodology for the damage assessment of vehicles exposed to flooding in urban areas. Journal of Flood Risk Management, 12(3), e12475 (Early View). https://doi.org/10.1111/jfr3.12475Monjo R., Gaitán E., Pórtoles J., Ribalaygua J., Torres L. 2016. Changes in extreme precipitation over Spain using statistical downscaling of CMIP5 projections. International Journal of Climatology, 36, 757-769. https://doi.org/10.1002/joc.4380Monjo R., Paradinas C., Gaitán E., Redolat D., Paradinas C., Prado C., Portolés J., Torres L., Ribalaygua J. Russo B., Velasco M., Pouget L., Vela S., David M. L., Morais M., Ribalaygua J. 2018. Report on extreme events predictions. Deliverable 1.3 RESCCUE Project. Grant Agreement No. 700174. Disponible en http://www.resccue.euPenning-Rowsell, E., Johnson, C., Tunstall, S., Tapsell, S., Morris, J., Chatterton, J., Green, C. 2005. The benefits of flood and coastal risk management: A handbook of assessment techniques. North London Business Park, Oakleigh Road South, London, England: Flood Hazard Research Centre, Middlesex University Press.Pyatkova K., Chen A. S., Djordjevic S., Butler D., Vojinovic Z., Abebe Y. A., Hammond M. 2015. Flood Impacts on Road transportation Using Microscopic Traffic Modelling Technique [Conference]. SUMO User Conference.Reiter, P. 2000. International methods of Risk Analysis, Damage evaluation and social impact studies concerning Dam-Break accidents. EU-Project RESCDAM. Seinäjoki, Finlandia.Russo, B., Gómez, M., Macchione, F. 2013. Pedestrian hazard criteria for flooded urban areas. Nat Hazards, 69, 251-265. https://doi.org/10.1007/s11069-013-0702-2Russo B., Pouget L., Malgrat P., García J. 2011. Evaluación del impacto del cambio climático en un caso de estudio de Barcelona a través de una modelización 2D-1D del drenaje dual. JIA2011. Barcelona, España. ISBN: 13-978-84-615-4023-5.Russo B., Sunyer D., Velasco M., Djordjević S. 2015. Analysis of extreme flooding events through a calibrated 1D/2D coupled model: the case of Barcelona (Spain). Journal of Hydroinformatics, 17(3), 473-491. https://doi.org/10.2166/hydro.2014.063Russo B. 2018. Multi-hazards assessment related to water cycle extreme events for current scenario. Deliverable 2.4 RESCCUE Project. Grant Agreement No. 700174. Disponible en http://www.resccue.euRusso B. 2019. Multi-hazards assessment related to water cycle extreme events for future scenarios (Business As Usual). Deliverable 2.3 RESCCUE Project. Grant Agreement No. 700174. Disponible en http://www.resccue.euShand, T.D., Cox, R., Blacka, M.J., Smith G.P. 2011. Australian Rainfall and Runoff (AR&R). Revision Project 10: Appropriate Safety Criteria for Vehicles (Report Number: P10/S2/020).U.S. Army Corps of Engineers (USACE). 2009. Economic Guidance Memorandum, 09-04, Generic Depth-Damage Relationships for Vehicles. Washington, D.C, USAVelasco, M., Russo, B., Martínez, M., Malgrat, P., Monjo, R., Djordjevic, S., Fontanals, I., Vela, S., Cardoso, M.A., Buskute, A. 2018. Resilience to cope with climate change in urban areas-A multisectorial approach focusing on water-The RESCCUE project. Water, 10, 1356-1366. https://doi.org/10.3390/w1010135

    Estudio de la musculatura axial en lubina salvaje y lubina atlántica cultivada, Dicentrarchus labrax L., de talla comercial. I: Estudio en fresco.

    Get PDF
    En este trabajo se realiza un estudio comparativo de la musculatura de la lubina, Dicentrarchus labrax L., procedente del medio natural (salvajes) y lubina de origen Atlántico cultivada bajo condiciones naturales de temperatura y fotoperiodo y alimentada con dietas artificiales. Se estudiaron un total de 25 ejemplares de tamaño comercial: 14 salvajes y 11 cultivados. Se midieron sus longitudes y pesos y se realizó una sección transversal en la zonal caudal (a nivel de la apertura anal) y en la zona craneal (a nivel del 4º radio de la aleta dorsal) con el fin de estudiar los siguientes parámetros: área transversal del total del miotomo y del músculo blanco, área y número de fibras blancas. Los ejemplares salvajes mostraron un mayor tamaño del área total del miotomo que los mantenidos a temperatura ambiente, aunque estas diferencias no fueron estadísticamente significativas. Asímismo, la constitución interna del miotomo fue diferente entre ambas poblaciones, de tal forma que los ejemplares de lubina salvaje presentaron un mayor número de fibras que los ejemplares cultivados de lubina atlántica (p<0.05). Por el contrario, el área de las fibras fue mayor en lubina atlántica (p<0.05). Este estudio pone de manifiesto que las condiciones medioambientales y el origen genético influyen sobre los mecanismos de crecimiento y la constitución fibrilar, lo que puede incidir en la calidad final del producto.MCYT. Proyecto AGL2000-1738-C03-0

    From community approaches to single-cell genomics: the discovery of ubiquitous hyperhalophilic Bacteroidetes generalists

    Get PDF
    The microbiota of multi-pond solar salterns around the world has been analyzed using a variety of culture-dependent and molecular techniques. However, studies addressing the dynamic nature of these systems are very scarce. Here we have characterized the temporal variation during 1 year of the microbiota of five ponds with increasing salinity (from 18% to >40%), by means of CARD-FISH and DGGE. Microbial community structure was statistically correlated with several environmental parameters, including ionic composition and meteorological factors, indicating that the microbial community was dynamic as specific phylotypes appeared only at certain times of the year. In addition to total salinity, microbial composition was strongly influenced by temperature and specific ionic composition. Remarkably, DGGE analyses unveiled the presence of most phylotypes previously detected in hypersaline systems using metagenomics and other molecular techniques, such as the very abundant Haloquadratum and Salinibacter representatives or the recently described low GC Actinobacteria and Nanohaloarchaeota. In addition, an uncultured group of Bacteroidetes was present along the whole range of salinity. Database searches indicated a previously unrecognized widespread distribution of this phylotype. Single-cell genome analysis of five members of this group suggested a set of metabolic characteristics that could provide competitive advantages in hypersaline environments, such as polymer degradation capabilities, the presence of retinal-binding light-activated proton pumps and arsenate reduction potential. In addition, the fairly high metagenomic fragment recruitment obtained for these single cells in both the intermediate and hypersaline ponds further confirm the DGGE data and point to the generalist lifestyle of this new Bacteroidetes group.This work was supported by the projects CGL2012-39627-C03-01 and 02 of the Spanish Ministry of Economy and Competitiveness, which were also co-financed with FEDER support from the European Union. TG group research is funded in part by a grant from the Spanish Ministry of Economy and Competitiveness (BIO2012-37161), a grant from the Qatar National Research Fund grant (NPRP 5-298-3-086) and a grant from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC (grant agreement no. ERC-2012-StG-310325)

    Methodology to quantify clogging coefficients for grated inlets. Application to SANT MARTI catchment (Barcelona)

    No full text
    Within the drainage system of a city, the set of inlets is in charge of taking the runoff produced by local storms to the stormwater/sewer. In the drainage system design the selection of appropriate inlet models and their location is one of the fundamental aspects. The hydraulics of these inlets has received great attention within the last years; however, few inlet makers provide the hydraulic capacity of their products. In addition, these data usually consider clean water, while in reality, numerous inlets can be either totally or partially clogged. This aspect should be kept in mind within the design process. In this paper, a methodology to consider the hydraulic effects of clogging phenomena is presented. The work started from a visual inspection of the grated inlets throughout the urban catchment of Sant Martí, Barcelona, as a means of identifying clogging patterns, their repetitive forms and their associated frequency. After that, clogged patterns were reproduced in laboratory testing of typical inlets types, thereby obtaining the real quantity of water that could be captured by each of them. It was shown that the same expression employed to describe the efficiency of clean inlets can be used to assess the efficiency of those clogged. A reduction factor in terms of hydraulic capacity and related to each clogging pattern has been defined for use in hydraulic studies of runoff along streets. Finally, the paper compares the obtained results in terms of clogging coefficient with another experimental campaign carried out in other catchment of the city
    corecore