2,280 research outputs found

    Multimodular Bio-Inspired Organized Structures Guiding Long-Distance Axonal Regeneration

    Get PDF
    Axonal bundles or axonal tracts have an aligned and unidirectional architecture present in many neural structures with different lengths. When peripheral nerve injury (PNI), spinal cord injury (SCI), traumatic brain injury (TBI), or neurodegenerative disease occur, the intricate architecture undergoes alterations leading to growth inhibition and loss of guidance through large distance. In order to overcome the limitations of long-distance axonal regeneration, here we combine a poly-L-lactide acid (PLA) fiber bundle in the common lumen of a sequence of hyaluronic acid (HA) conduits or modules and pre-cultured Schwann cells (SC) as cells supportive of axon extension. This multimodular preseeded conduit is then used to induce axon growth from a dorsal root ganglion (DRG) explant placed at one of its ends and left for 21 days to follow axon outgrowth. The multimodular conduit proved effective in promoting directed axon growth, and the results may thus be of interest for the regeneration of long tissue defects in the nervous system. Furthermore, the hybrid structure grown within the HA modules consisting in the PLA fibers and the SC can be extracted from the conduit and cultured independently. This “neural cord” proved to be viable outside its scaffold and opens the door to the generation of ex vivo living nerve in vitro for transplantation.This research was funded by the Spanish Government’s State Research Agency (AEI) through projects DPI2015-72863-EXP and RTI2018-095872-B-C22/ERDF. Laura Rodríguez Doblado acknowledges scholarship FPU15/04975 of the Spanish Ministry of Education, Culture, and Sports

    Web 2.0 and social networks: a study of scientific publications in Spanish communication journals

    Get PDF
    La comunicación y la publicidad viven actualmente inmersas en un proceso de cambio y evolución constantes, alimentados por la revolución social, cultural y tecnológica que ha supuesto la web 2.0. El trabajo que se presenta tiene como objetivo conocer las principales líneas de trabajo académico en el ámbito de las redes sociales y la web 2.0 en España, estudiando la proyección y el uso que se da a cada una de las metodologías de investigación científica. Para la realización del análisis se han seleccionado las publicaciones sobre este tema en las principales revistas de comunicación en España.Communication and advertising currently live immersed in a process of change and constant evolution, powered by social, cultural and technological revolution that web 2.0 has brought. This work aims to determine the main lines of academic work in the field of social networks and web 2.0 in Spain, studying the projection and the use given to each of the scientific research methodologies. To carry out the analysis it has been done a selection of publications on this topic in major communication journals of Spain

    Axonal extension from dorsal root ganglia on fibrillar and highly aligned poly(lactic acid)-polypyrrole substrates obtained by two different techniques: Electrospun nanofibres and extruded microfibres

    Get PDF
    [EN] The biological behaviour of Schwann cells (SCs) and dorsal root ganglia (DRG) on fibrillar, highly aligned and electroconductive substrates obtained by two different techniques is studied. Mats formed by nanometer-sized fibres of poly(lactic acid) (PLA) are obtained by the electrospinning technique, while bundles formed by micrometer-sized extruded PLA fibres are obtained by grouping microfibres together. Both types of substrates are coated with the electrically conductive polymer polypyrrole (PPy) and their morphological, physical and electrical characterization is carried out. SCs on micrometer-sized substrates show a higher motility and cell-cell interaction, while a higher cell-material interaction with a lower cell motility is observed for nanometer-sized substrates. This higher motility and cell-cell interaction of SCs on the micrometer-sized substrates entails a higher axonal growth from DRG, since the migration of SCs from the DRG body is accelerated and, therefore, the SCs tapestry needed for the axonal growth is formed earlier on the substrate. A higher length and area of the axons is observed for these micrometer-sized substrates, as well as a higher level of axonal sprouting when compared with the nanometer-sized ones. These substrates offer the possibility of being electrically stimulated in different tissue engineering applications of the nervous system.The authors acknowledge financing from the Spanish Government's State Research Agency (AEI) through projects DPI2015-72863-EXP and RTI2018-095872-B-C22/ERDF. FGR acknowledges scholarship FPU16/01833 of the Spanish Ministry of Universities. We thank the Electron Microscopy Service at the UPV, where the FESEM images were obtainedGisbert-Roca, F.; Más Estellés, J.; Monleón Pradas, M.; Martínez-Ramos, C. (2020). Axonal extension from dorsal root ganglia on fibrillar and highly aligned poly(lactic acid)-polypyrrole substrates obtained by two different techniques: Electrospun nanofibres and extruded microfibres. International Journal of Biological Macromolecules. 163:1959-1969. https://doi.org/10.1016/j.ijbiomac.2020.09.181S19591969163Houschyar, K. S., Momeni, A., Pyles, M. N., Cha, J. Y., Maan, Z. N., Duscher, D., … Schoonhoven, J. van. (2016). The Role of Current Techniques and Concepts in Peripheral Nerve Repair. Plastic Surgery International, 2016, 1-8. doi:10.1155/2016/4175293Daly, W., Yao, L., Zeugolis, D., Windebank, A., & Pandit, A. (2011). A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. Journal of The Royal Society Interface, 9(67), 202-221. doi:10.1098/rsif.2011.0438De Ruiter, G. C. W., Malessy, M. J. A., Yaszemski, M. J., Windebank, A. J., & Spinner, R. J. (2009). Designing ideal conduits for peripheral nerve repair. Neurosurgical Focus, 26(2), E5. doi:10.3171/foc.2009.26.2.e5Tang-Schomer, M. D. (2018). 3D axon growth by exogenous electrical stimulus and soluble factors. Brain Research, 1678, 288-296. doi:10.1016/j.brainres.2017.10.032Sarker, M. D., Naghieh, S., McInnes, A. D., Schreyer, D. J., & Chen, X. (2018). Regeneration of peripheral nerves by nerve guidance conduits: Influence of design, biopolymers, cells, growth factors, and physical stimuli. Progress in Neurobiology, 171, 125-150. doi:10.1016/j.pneurobio.2018.07.002Kim, I. A., Park, S. A., Kim, Y. J., Kim, S.-H., Shin, H. J., Lee, Y. J., … Shin, J.-W. (2006). Effects of mechanical stimuli and microfiber-based substrate on neurite outgrowth and guidance. Journal of Bioscience and Bioengineering, 101(2), 120-126. doi:10.1263/jbb.101.120English, A. W., Schwartz, G., Meador, W., Sabatier, M. J., & Mulligan, A. (2007). Electrical stimulation promotes peripheral axon regeneration by enhanced neuronal neurotrophin signaling. Developmental Neurobiology, 67(2), 158-172. doi:10.1002/dneu.20339Schmidt, C. E., Shastri, V. R., Vacanti, J. P., & Langer, R. (1997). Stimulation of neurite outgrowth using an electrically conducting polymer. Proceedings of the National Academy of Sciences, 94(17), 8948-8953. doi:10.1073/pnas.94.17.8948Amani, H., Arzaghi, H., Bayandori, M., Dezfuli, A. S., Pazoki‐Toroudi, H., Shafiee, A., & Moradi, L. (2019). Controlling Cell Behavior through the Design of Biomaterial Surfaces: A Focus on Surface Modification Techniques. Advanced Materials Interfaces, 6(13), 1900572. doi:10.1002/admi.201900572Zhu, W., Masood, F., O’Brien, J., & Zhang, L. G. (2015). Highly aligned nanocomposite scaffolds by electrospinning and electrospraying for neural tissue regeneration. Nanomedicine: Nanotechnology, Biology and Medicine, 11(3), 693-704. doi:10.1016/j.nano.2014.12.001Lee, Y.-S., Collins, G., & Livingston Arinzeh, T. (2011). Neurite extension of primary neurons on electrospun piezoelectric scaffolds. Acta Biomaterialia, 7(11), 3877-3886. doi:10.1016/j.actbio.2011.07.013Lee, J. Y., Bashur, C. A., Goldstein, A. S., & Schmidt, C. E. (2009). Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials, 30(26), 4325-4335. doi:10.1016/j.biomaterials.2009.04.042Zou, Y., Qin, J., Huang, Z., Yin, G., Pu, X., & He, D. (2016). Fabrication of Aligned Conducting PPy-PLLA Fiber Films and Their Electrically Controlled Guidance and Orientation for Neurites. ACS Applied Materials & Interfaces, 8(20), 12576-12582. doi:10.1021/acsami.6b00957Xu, Y., Huang, Z., Pu, X., Yin, G., & Zhang, J. (2019). Fabrication of Chitosan/Polypyrrole‐coated poly(L‐lactic acid)/Polycaprolactone aligned fibre films for enhancement of neural cell compatibility and neurite growth. Cell Proliferation, 52(3), e12588. doi:10.1111/cpr.12588Wang, H. B., Mullins, M. E., Cregg, J. M., McCarthy, C. W., & Gilbert, R. J. (2010). Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration. Acta Biomaterialia, 6(8), 2970-2978. doi:10.1016/j.actbio.2010.02.020Christopherson, G. T., Song, H., & Mao, H.-Q. (2009). The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials, 30(4), 556-564. doi:10.1016/j.biomaterials.2008.10.004Gnavi, S., Fornasari, B. E., Tonda-Turo, C., Ciardelli, G., Zanetti, M., Geuna, S., & Perroteau, I. (2015). The influence of electrospun fibre size on Schwann cell behaviour and axonal outgrowth. Materials Science and Engineering: C, 48, 620-631. doi:10.1016/j.msec.2014.12.055Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325-347. doi:10.1016/j.biotechadv.2010.01.004Agarwal, S., Wendorff, J. H., & Greiner, A. (2008). Use of electrospinning technique for biomedical applications. Polymer, 49(26), 5603-5621. doi:10.1016/j.polymer.2008.09.014Markus, A., Patel, T. D., & Snider, W. D. (2002). Neurotrophic factors and axonal growth. Current Opinion in Neurobiology, 12(5), 523-531. doi:10.1016/s0959-4388(02)00372-0Lu, P., & Tuszynski, M. H. (2008). Growth factors and combinatorial therapies for CNS regeneration. Experimental Neurology, 209(2), 313-320. doi:10.1016/j.expneurol.2007.08.004Lykissas, M., Batistatou, A., Charalabopoulos, K., & Beris, A. (2007). The Role of Neurotrophins in Axonal Growth, Guidance, and Regeneration. Current Neurovascular Research, 4(2), 143-151. doi:10.2174/156720207780637216Bregman, B. S., McAtee, M., Dai, H. N., & Kuhn, P. L. (1997). Neurotrophic Factors Increase Axonal Growth after Spinal Cord Injury and Transplantation in the Adult Rat. Experimental Neurology, 148(2), 475-494. doi:10.1006/exnr.1997.6705Freeman, M. R. (2006). Sculpting the nervous system: glial control of neuronal development. Current Opinion in Neurobiology, 16(1), 119-125. doi:10.1016/j.conb.2005.12.004Pompili, E., Ciraci, V., Leone, S., De Franchis, V., Familiari, P., Matassa, R., … Fabrizi, C. (2020). Thrombin regulates the ability of Schwann cells to support neuritogenesis and to maintain the integrity of the nodes of Ranvier. European Journal of Histochemistry, 64(2). doi:10.4081/ejh.2020.3109El Seblani, N., Welleford, A. S., Quintero, J. E., van Horne, C. G., & Gerhardt, G. A. (2020). Invited review: Utilizing peripheral nerve regenerative elements to repair damage in the CNS. Journal of Neuroscience Methods, 335, 108623. doi:10.1016/j.jneumeth.2020.108623Jessen, K. R., & Arthur-Farraj, P. (2019). Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia, 67(3), 421-437. doi:10.1002/glia.23532Jessen, K. R., Mirsky, R., & Lloyd, A. C. (2015). Schwann Cells: Development and Role in Nerve Repair. Cold Spring Harbor Perspectives in Biology, 7(7), a020487. doi:10.1101/cshperspect.a020487Gomez-Sanchez, J. A., Pilch, K. S., van der Lans, M., Fazal, S. V., Benito, C., Wagstaff, L. J., … Jessen, K. R. (2017). After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination. The Journal of Neuroscience, 37(37), 9086-9099. doi:10.1523/jneurosci.1453-17.2017Wang, L.-X., Li, X.-G., & Yang, Y.-L. (2001). Preparation, properties and applications of polypyrroles. Reactive and Functional Polymers, 47(2), 125-139. doi:10.1016/s1381-5148(00)00079-1Le, T.-H., Kim, Y., & Yoon, H. (2017). Electrical and Electrochemical Properties of Conducting Polymers. Polymers, 9(12), 150. doi:10.3390/polym9040150Mattioli-Belmonte, M., Gabbanelli, F., Marcaccio, M., Giantomassi, F., Tarsi, R., Natali, D., … Biagini, G. (2005). Bio-characterisation of tosylate-doped polypyrrole films for biomedical applications. Materials Science and Engineering: C, 25(1), 43-49. doi:10.1016/j.msec.2004.04.002Sabouraud, G., Sadki, S., & Brodie, N. (2000). The mechanisms of pyrrole electropolymerization. Chemical Society Reviews, 29(5), 283-293. doi:10.1039/a807124aLi, C., Bai, H., & Shi, G. (2009). Conducting polymer nanomaterials: electrosynthesis and applications. Chemical Society Reviews, 38(8), 2397. doi:10.1039/b816681cAznar-Cervantes, S., Roca, M. I., Martinez, J. G., Meseguer-Olmo, L., Cenis, J. L., Moraleda, J. M., & Otero, T. F. (2012). Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry, 85, 36-43. doi:10.1016/j.bioelechem.2011.11.008Sun, X., Peng, J., Zhou, J., Wang, Y., Cheng, L., & Wu, Z. (2016). Preparation of polypyrrole-embedded electrospun poly(lactic acid) nanofibrous scaffolds for nerve tissue engineering. Neural Regeneration Research, 11(10), 1644. doi:10.4103/1673-5374.193245George, P. M., Lyckman, A. W., LaVan, D. A., Hegde, A., Leung, Y., Avasare, R., … Sur, M. (2005). Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials, 26(17), 3511-3519. doi:10.1016/j.biomaterials.2004.09.037Lunt, J. (1998). Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability, 59(1-3), 145-152. doi:10.1016/s0141-3910(97)00148-1Ramot, Y., Haim-Zada, M., Domb, A. J., & Nyska, A. (2016). Biocompatibility and safety of PLA and its copolymers. Advanced Drug Delivery Reviews, 107, 153-162. doi:10.1016/j.addr.2016.03.012Da Silva, D., Kaduri, M., Poley, M., Adir, O., Krinsky, N., Shainsky-Roitman, J., & Schroeder, A. (2018). Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chemical Engineering Journal, 340, 9-14. doi:10.1016/j.cej.2018.01.010Wan, Y., & Wen, D. (2005). Preparation and characterization of porous conducting poly(dl-lactide) composite membranes. Journal of Membrane Science, 246(2), 193-201. doi:10.1016/j.memsci.2004.07.032Shi, G., Rouabhia, M., Wang, Z., Dao, L. H., & Zhang, Z. (2004). A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials, 25(13), 2477-2488. doi:10.1016/j.biomaterials.2003.09.032Wang, Z., Roberge, C., Dao, L. H., Wan, Y., Shi, G., Rouabhia, M., … Zhang, Z. (2004). In vivo evaluation of a novel electrically conductive polypyrrole/poly(D,L-lactide) composite and polypyrrole-coated poly(D,L-lactide-co-glycolide) membranes. Journal of Biomedical Materials Research, 70A(1), 28-38. doi:10.1002/jbm.a.30047Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002Lam, C. X. F., Hutmacher, D. W., Schantz, J.-T., Woodruff, M. A., & Teoh, S. H. (2009). Evaluation of polycaprolactone scaffold degradation for 6 monthsin vitroandin vivo. Journal of Biomedical Materials Research Part A, 90A(3), 906-919. doi:10.1002/jbm.a.32052Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019Callens, S. J. P., Uyttendaele, R. J. C., Fratila-Apachitei, L. E., & Zadpoor, A. A. (2020). Substrate curvature as a cue to guide spatiotemporal cell and tissue organization. Biomaterials, 232, 119739. doi:10.1016/j.biomaterials.2019.119739Rolli, C. G., Nakayama, H., Yamaguchi, K., Spatz, J. P., Kemkemer, R., & Nakanishi, J. (2012). Switchable adhesive substrates: Revealing geometry dependence in collective cell behavior. Biomaterials, 33(8), 2409-2418. doi:10.1016/j.biomaterials.2011.12.012Doxzen, K., Vedula, S. R. K., Leong, M. C., Hirata, H., Gov, N. S., Kabla, A. J., … Lim, C. T. (2013). Guidance of collective cell migration by substrate geometry. Integrative Biology, 5(8), 1026. doi:10.1039/c3ib40054aKim, Y., Haftel, V. K., Kumar, S., & Bellamkonda, R. V. (2008). The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials, 29(21), 3117-3127. doi:10.1016/j.biomaterials.2008.03.042Schnell, E., Klinkhammer, K., Balzer, S., Brook, G., Klee, D., Dalton, P., & Mey, J. (2007). Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend. Biomaterials, 28(19), 3012-3025. doi:10.1016/j.biomaterials.2007.03.00

    Electrical Stimulation Increases Axonal Growth from Dorsal Root Ganglia Co-Cultured with Schwann Cells in Highly Aligned PLA-PPy-Au Microfiber Substrates

    Get PDF
    [EN] Nerve regeneration is a slow process that needs to be guided for distances greater than 5 mm. For this reason, different strategies are being studied to guide axonal growth and accelerate the axonal growth rate. In this study, we employ an electroconductive fibrillar substrate that is able to topographically guide axonal growth while accelerating the axonal growth rate when subjected to an exogenous electric field. Dorsal root ganglia were seeded in co-culture with Schwann cells on a substrate of polylactic acid microfibers coated with the electroconductive polymer polypyrrole, adding gold microfibers to increase its electrical conductivity. The substrate is capable of guiding axonal growth in a highly aligned manner and, when subjected to an electrical stimulation, an improvement in axonal growth is observed. As a result, an increase in the maximum length of the axons of 19.2% and an increase in the area occupied by the axons of 40% were obtained. In addition, an upregulation of the genes related to axon guidance, axogenesis, Schwann cells, proliferation and neurotrophins was observed for the electrically stimulated group. Therefore, our device is a good candidate for nerve regeneration therapies.This research was funded by the Spanish Government's State Research Agency (AEI) through project RTI2018-095872-B-C22/ERDF and by RISEUP project FetOpen in H2020 Program: RISEUP 964562 H2020 FetOpen program.Gisbert Roca, F.; Serrano Requena, S.; Monleón Pradas, M.; Martínez-Ramos, C. (2022). Electrical Stimulation Increases Axonal Growth from Dorsal Root Ganglia Co-Cultured with Schwann Cells in Highly Aligned PLA-PPy-Au Microfiber Substrates. International Journal of Molecular Sciences. 23:1-22. https://doi.org/10.3390/ijms231263621222

    Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits

    Full text link
    [EN] Hydrogels have widely been proposed lately as strategies for neural tissue regeneration, but there are still some issues to be solved before their efficient use in tissue engineering of trauma, stroke or the idiopathic degeneration of the nervous system. In a previous work of the authors a novel Schwann-cell structure with the shape of a hollow cylinder was obtained using a three-dimensional conduit based in crosslinked hyaluronic acid as template. This original engineered tissue of tightly joined Schwann cells obtained in a conduit lumen having 400 mu m in diameter is a consequence of specific cell-material interactions. In the present work we analyze the influence of the hydrogel concentration and of the drying process on the physicochemical and biological performance of the resulting tubular scaffolds, and prove that the cylinder-like cell sheath obtains also in scaffolds of a larger inner diameter. The diffusion of glucose and of the protein BSA through the scaffolds is studied and characterized, as well as the enzymatic degradation kinetics of the lyophilized conduits. This can be modulated from a couple of weeks to several months by varying the concentration of hyaluronic acid in the starting solution. These findings allow to improve the performance of hyaluronan intended for neural conduits, and open the way to scaffolds with tunable degradation rate adapted to the site and severity of the injury.The authors acknowledge Spanish Ministerio de Ciencia e Innovacion through projects PRI-PIMNEU-2011-1372 (ERANET-Neuron), MAT2011-28791-C03-02 and -03. I. Ortuno Lizaran acknowledges support by CIBER-BBN starting grant.Ortuño-Lizarán, I.; Vilariño, G.; Martínez-Ramos, C.; Monleón Pradas, M.; Vallés Lluch, A. (2016). Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits. Biofabrication. 8(4):1-12. https://doi.org/10.1088/1758-5090/8/4/045011S11284Devos, D., Moreau, C., Dujardin, K., Cabantchik, I., Defebvre, L., & Bordet, R. (2013). New Pharmacological Options for Treating Advanced Parkinson’s Disease. Clinical Therapeutics, 35(10), 1640-1652. doi:10.1016/j.clinthera.2013.08.011Speed, C. A. (2001). Therapeutic ultrasound in soft tissue lesions. Rheumatology, 40(12), 1331-1336. doi:10.1093/rheumatology/40.12.1331Jibuike, O. O. (2003). Management of soft tissue knee injuries in an accident and emergency department: the effect of the introduction of a physiotherapy practitioner. Emergency Medicine Journal, 20(1), 37-39. doi:10.1136/emj.20.1.37Berry, M. (1986). Neurogenesis and gliogenesis in the human brain. Food and Chemical Toxicology, 24(2), 79-89. doi:10.1016/0278-6915(86)90341-8Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D. A., & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4(11), 1313-1317. doi:10.1038/3305Murrell, W., Bushell, G. R., Livesey, J., McGrath, J., MacDonald, K. P. A., Bates, P. R., & Mackay-Sim, A. (1996). Neurogenesis in adult human. NeuroReport, 7(6), 1189-1194. doi:10.1097/00001756-199604260-00019Alvarez-Buylla, A., & Garcı́a-Verdugo, J. M. (2002). Neurogenesis in Adult Subventricular Zone. The Journal of Neuroscience, 22(3), 629-634. doi:10.1523/jneurosci.22-03-00629.2002Braak, H., & Del Tredici, K. (2008). Assessing fetal nerve cell grafts in Parkinson’s disease. Nature Medicine, 14(5), 483-485. doi:10.1038/nm0508-483Tennstaedt, A., Aswendt, M., Adamczak, J., Collienne, U., Selt, M., Schneider, G., … Hoehn, M. (2015). Human neural stem cell intracerebral grafts show spontaneous early neuronal differentiation after several weeks. Biomaterials, 44, 143-154. doi:10.1016/j.biomaterials.2014.12.038Papastefanaki, F., Chen, J., Lavdas, A. A., Thomaidou, D., Schachner, M., & Matsas, R. (2007). Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury. Brain, 130(8), 2159-2174. doi:10.1093/brain/awm155Fortun, J., Hill, C. E., & Bunge, M. B. (2009). Combinatorial strategies with Schwann cell transplantation to improve repair of the injured spinal cord. Neuroscience Letters, 456(3), 124-132. doi:10.1016/j.neulet.2008.08.092Grandhi, R., Ricks, C., Shin, S., & Becker, C. (2014). Extracellular matrices, artificial neural scaffolds and the promise of neural regeneration. Neural Regeneration Research, 9(17), 1573. doi:10.4103/1673-5374.141778Schmidt, C. E., & Leach, J. B. (2003). Neural Tissue Engineering: Strategies for Repair and Regeneration. Annual Review of Biomedical Engineering, 5(1), 293-347. doi:10.1146/annurev.bioeng.5.011303.120731Olson, H. E., Rooney, G. E., Gross, L., Nesbitt, J. J., Galvin, K. E., Knight, A., … Windebank, A. J. (2009). Neural Stem Cell– and Schwann Cell–Loaded Biodegradable Polymer Scaffolds Support Axonal Regeneration in the Transected Spinal Cord. Tissue Engineering Part A, 15(7), 1797-1805. doi:10.1089/ten.tea.2008.0364Sinis, N., Schaller, H.-E., Schulte-Eversum, C., Schlosshauer, B., Doser, M., Dietz, K., … Haerle, M. (2005). Nerve regeneration across a 2-cm gap in the rat median nerve using a resorbable nerve conduit filled with Schwann cells. Journal of Neurosurgery, 103(6), 1067-1076. doi:10.3171/jns.2005.103.6.1067Hudson, T. W., Evans, G. R. D., & Schmidt, C. E. (2000). ENGINEERING STRATEGIES FOR PERIPHERAL NERVE REPAIR. Orthopedic Clinics of North America, 31(3), 485-497. doi:10.1016/s0030-5898(05)70166-8Jansen, K., van der Werff, J. F. ., van Wachem, P. ., Nicolai, J.-P. ., de Leij, L. F. M. ., & van Luyn, M. J. . (2004). A hyaluronan-based nerve guide: in vitro cytotoxicity, subcutaneous tissue reactions, and degradation in the rat. Biomaterials, 25(3), 483-489. doi:10.1016/s0142-9612(03)00544-1Lam, J., Truong, N. F., & Segura, T. (2014). Design of cell–matrix interactions in hyaluronic acid hydrogel scaffolds. Acta Biomaterialia, 10(4), 1571-1580. doi:10.1016/j.actbio.2013.07.025Lei, Y., Gojgini, S., Lam, J., & Segura, T. (2011). The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials, 32(1), 39-47. doi:10.1016/j.biomaterials.2010.08.103HARDINGHAM, T. (2004). Solution Properties of Hyaluronan. Chemistry and Biology of Hyaluronan, 1-19. doi:10.1016/b978-008044382-9/50032-7Day, A. J., & de la Motte, C. A. (2005). Hyaluronan cross-linking: a protective mechanism in inflammation? Trends in Immunology, 26(12), 637-643. doi:10.1016/j.it.2005.09.009Milner, C. M., Higman, V. A., & Day, A. J. (2006). TSG-6: a pluripotent inflammatory mediator? Biochemical Society Transactions, 34(3), 446-450. doi:10.1042/bst0340446West, D., Hampson, I., Arnold, F., & Kumar, S. (1985). Angiogenesis induced by degradation products of hyaluronic acid. Science, 228(4705), 1324-1326. doi:10.1126/science.2408340L. Hallén, C. Johansson, C. Laurent. (1999). Cross-linked Hyaluronan (Hylan B Gel): a New Injectable Remedy for Treatment of Vocal Fold Insufficiency - an Animal Study. Acta Oto-Laryngologica, 119(1), 107-111. doi:10.1080/00016489950182043Collins, M. N., & Birkinshaw, C. (2007). Comparison of the effectiveness of four different crosslinking agents with hyaluronic acid hydrogel films for tissue-culture applications. Journal of Applied Polymer Science, 104(5), 3183-3191. doi:10.1002/app.25993Ibrahim, S., Kang, Q. K., & Ramamurthi, A. (2010). The impact of hyaluronic acid oligomer content on physical, mechanical, and biologic properties of divinyl sulfone-crosslinked hyaluronic acid hydrogels. Journal of Biomedical Materials Research Part A, 9999A, NA-NA. doi:10.1002/jbm.a.32704Rnjak-Kovacina, J., Wray, L. S., Burke, K. A., Torregrosa, T., Golinski, J. M., Huang, W., & Kaplan, D. L. (2015). Lyophilized Silk Sponges: A Versatile Biomaterial Platform for Soft Tissue Engineering. ACS Biomaterials Science & Engineering, 1(4), 260-270. doi:10.1021/ab500149pYu, C., Bianco, J., Brown, C., Fuetterer, L., Watkins, J. F., Samani, A., & Flynn, L. E. (2013). Porous decellularized adipose tissue foams for soft tissue regeneration. Biomaterials, 34(13), 3290-3302. doi:10.1016/j.biomaterials.2013.01.056Vilariño-Feltrer, G., Martínez-Ramos, C., Monleón-de-la-Fuente, A., Vallés-Lluch, A., Moratal, D., Barcia Albacar, J. A., & Monleón Pradas, M. (2016). Schwann-cell cylinders grown inside hyaluronic-acid tubular scaffolds with gradient porosity. Acta Biomaterialia, 30, 199-211. doi:10.1016/j.actbio.2015.10.040Trinder, P. (1969). Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. Journal of Clinical Pathology, 22(2), 158-161. doi:10.1136/jcp.22.2.158Fu, J. C., Hagemeir, C., Moyer, D. L., & Ng, E. W. (1976). A unified mathematical model for diffusion from drug-polymer composite tablets. Journal of Biomedical Materials Research, 10(5), 743-758. doi:10.1002/jbm.820100507Kim, J. K., Kim, H. J., Chung, J.-Y., Lee, J.-H., Young, S.-B., & Kim, Y.-H. (2013). Natural and synthetic biomaterials for controlled drug delivery. Archives of Pharmacal Research, 37(1), 60-68. doi:10.1007/s12272-013-0280-6Annabi, N., Nichol, J. W., Zhong, X., Ji, C., Koshy, S., Khademhosseini, A., & Dehghani, F. (2010). Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering. Tissue Engineering Part B: Reviews, 16(4), 371-383. doi:10.1089/ten.teb.2009.0639GRIBBON, P., HENG, B. C., & HARDINGHAM, T. E. (2000). The analysis of intermolecular interactions in concentrated hyaluronan solutions suggest no evidence for chain–chain association. Biochemical Journal, 350(1), 329-335. doi:10.1042/bj3500329Bitar, K. N., & Zakhem, E. (2014). Design Strategies of Biodegradable Scaffolds for Tissue Regeneration. Biomedical Engineering and Computational Biology, 6, BECB.S10961. doi:10.4137/becb.s10961Ojha, B., & Das, G. (2011). Role of hydrophobic and polar interactions for BSA–amphiphile composites. Chemistry and Physics of Lipids, 164(2), 144-150. doi:10.1016/j.chemphyslip.2010.12.004Martins, M., Azoia, N. G., Shimanovich, U., Matamá, T., Gomes, A. C., Silva, C., & Cavaco-Paulo, A. (2014). Design of Novel BSA/Hyaluronic Acid Nanodispersions for Transdermal Pharma Purposes. Molecular Pharmaceutics, 11(5), 1479-1488. doi:10.1021/mp400657gChen, J.-P., Chen, S.-H., Chen, C.-H., & Shalumon, K. T. (2014). Preparation and characterization of antiadhesion barrier film from hyaluronic acid-grafted electrospun poly(caprolactone) nanofibrous membranes for prevention of flexor tendon postoperative peritendinous adhesion. International Journal of Nanomedicine, 4079. doi:10.2147/ijn.s67931Smit, X., van Neck, J. W., Afoke, A., & Hovius, S. E. R. (2004). Reduction of neural adhesions by biodegradable autocrosslinked hyaluronic acid gel after injury of peripheral nerves: an experimental study. Journal of Neurosurgery, 101(4), 648-652. doi:10.3171/jns.2004.101.4.0648Erturk, S., Yuceyar, S., Temiz, M., Ekci, B., Sakoglu, N., Balci, H., … Saner, H. (2003). Effects of Hyaluronic Acid-Carboxymethylcellulose Antiadhesion Barrier on Ischemic Colonic Anastomosis. Diseases of the Colon & Rectum, 46(4), 529-534. doi:10.1007/s10350-004-6594-1Godinho, M. J., Teh, L., Pollett, M. A., Goodman, D., Hodgetts, S. I., Sweetman, I., … Harvey, A. R. (2013). Immunohistochemical, Ultrastructural and Functional Analysis of Axonal Regeneration through Peripheral Nerve Grafts Containing Schwann Cells Expressing BDNF, CNTF or NT3. PLoS ONE, 8(8), e69987. doi:10.1371/journal.pone.0069987Nie, X., Deng, M., Yang, M., Liu, L., Zhang, Y., & Wen, X. (2013). Axonal Regeneration and Remyelination Evaluation of Chitosan/Gelatin-Based Nerve Guide Combined with Transforming Growth Factor-β1 and Schwann Cells. Cell Biochemistry and Biophysics, 68(1), 163-172. doi:10.1007/s12013-013-9683-

    Cannabis Use and Emotional Intelligence in Adolescents during COVID-19 Confinement: A Social Network Analysis Approach

    Get PDF
    [EN] Confinement by COVID-19 had negative consequences on adolescent mental health, including increased cannabis use. Cannabis is related to variables that influence health and well-being. Emotional Intelligence is associated with adaptive coping styles, peer relationships, and social–emotional competencies. In adolescence, peer selection plays a unique role in the initiation of substance use. However, there are no studies during a confinement stage that analyse the relationships between networks, Emotional Intelligence, and cannabis use. The aim of this paper is to describe and analyse the consumption and friendship networks of an adolescent classroom and their relationship with Emotional Intelligence, cannabis use, and gender during COVID-19 confinement. Participants completed different questionnaires for Emotional Intelligence, cannabis use, and the consumption and friendship network. The sample consisted of 21 students from 10th grade, of which 47.6% were consumers. The friendship network correlates with the consumption network, and significant associations between emotional repair and being a cannabis user. The regression model points to the friendship network as a significant variable in predicting the classroom use network. This study highlights the role of the Social Network Analysis in predicting consumption networks during a COVID-19 confinement stage and serves as a tool for cannabis use prevention interventions in a specific population.S

    ctuaciones sobre la autonomía, información y participación de los pacientes con cáncer colorrectal en un Hospital de Día de Oncología Médica

    Get PDF
    Introducción: La Ley 41/2002, de Autonomía del Paciente, obliga a informar para que el paciente participe activamente en la toma de decisiones respecto al diagnóstico y al tratamiento de la enfermedad. Sin embargo, el cáncer conlleva una información adversa y la toma de decisiones por los pacientes oncológicos es un proceso complejo. Objetivo: Conocer las necesidades de los pacientes con cáncer colorrectal atendidos en el Hospital de Día en los aspectos relacionados con la autonomía, información y la participación. Metodología: El estudio se dividió en 3 fases: medición preintervención; intervención y medición postintervención. Resultados: Entre Nov/2007 y Feb/2008, se incluyeron 119 pacientes. Las mejoras solicitadas fueron una consulta de enfermería (68%), más información por escrito (14%) y otras (18%). Se elaboraron 15 documentos informativos y se creó la consulta de enfermería. Los resultados de la primera (n=80) versus (vs) tercera etapa (n= 39) son: información adecuada (83% vs 87%); cree que su diagnóstico es cáncer (57% vs 59%); a quién quiere el paciente que se informe (paciente y familia 85% vs 77%, solo al paciente 10% vs 20%); opinión sobre el CI (buena/muy buena 80% vs 86%); conoce sus derechos (47% vs 84%); conoce la Ley de Autonomía (1% vs 21%), y conoce las Instrucciones previas (0% vs 10%). Conclusiones: Estas intervenciones han modificado el conocimiento de los derechos de los pacientes, de la Ley de Autonomía y las Instrucciones Previas, pero no se ha incrementado el número de pacientes que reconocen que su enfermedad es un cáncer

    Solid Polymer Electrolytes Based on Polylactic Acid Nanofiber Mats Coated with Polypyrrole

    Full text link
    This is the peer reviewed version of the following article: Gisbert, F., García-Bernabé, A., Compañ, V., Martínez-Ramos, C., Monleón, M., Solid Polymer Electrolytes Based on Polylactic Acid Nanofiber Mats Coated with Polypyrrole. Macromol. Mater. Eng. 2021, 306, 2000584, which has been published in final form at https://doi.org/10.1002/mame.202000584. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] The production of electroconductive nanofiber membranes made from polylactic acid (PLA) coated with polypyrrole (PPy) is investigated, performing a scanning of different reaction parameters and studying their physicochemical and dielectric properties. Depending on PPy content, a transition between conduction mechanisms is observed, with a temperature-dependent relaxation process for samples without PPy, a temperature-independent conduction process for samples with high contents of PPy and a combination of both processes for samples with low contents of PPy. A homogeneous and continuous coating is achieved from 23 wt% PPy, observing a percolation effect around 27 wt% PPy. Higher wt% PPy allow to obtain higher conductivities, but PPy aggregates appear from 34% wt% PPy. The high conductivity values obtained for electrospun membranes both through-plane and in-plane (above 0.05 and 0.20 S cm¿1, respectively, at room temperature) for the highest wt% of PPy, their porous structure with high specific surface area and their thermal stability below 140 °C make them candidates for many potential applications as solid polymer electrolytes in, for example, batteries, supercapacitors, sensors, photosensors, or polymer electrolyte membrane fuel cells (PEMFCs). In addition, the biocompatibility of PLA-PPy membranes expand their potential applications also in the field of tissue engineering and implantable devices.The authors acknowledge financing from the Spanish Government's State Research Agency (AEI) through projects DPI2015-72863-EXP and RTI2018-095872-B-C22/ERDF. FGR acknowledges the scholarship FPU16/01833 of the Spanish Ministry of Universities. The authors thank the Electron Microscopy Service at the UPV, where the FESEM images were obtained.Gisbert-Roca, F.; Garcia-Bernabe, A.; Compañ Moreno, V.; Martínez-Ramos, C.; Monleón Pradas, M. (2021). Solid Polymer Electrolytes Based on Polylactic Acid Nanofiber Mats Coated with Polypyrrole. Macromolecular Materials and Engineering. 306(2):1-14. https://doi.org/10.1002/mame.202000584S1143062McNeill, R., Siudak, R., Wardlaw, J., & Weiss, D. (1963). Electronic Conduction in Polymers. I. The Chemical Structure of Polypyrrole. Australian Journal of Chemistry, 16(6), 1056. doi:10.1071/ch9631056Bolto, B., & Weiss, D. (1963). Electronic Conduction in Polymers. II. The Electrochemical Reduction of Polypyrrole at Controlled Potential. Australian Journal of Chemistry, 16(6), 1076. doi:10.1071/ch9631076Bolto, B., McNeill, R., & Weiss, D. (1963). Electronic Conduction in Polymers. III. Electronic Properties of Polypyrrole. Australian Journal of Chemistry, 16(6), 1090. doi:10.1071/ch9631090McNeill, R., Weiss, D., & Willis, D. (1965). Electronic conduction in polymers. IV. Polymers from imidazole and pyridine. Australian Journal of Chemistry, 18(4), 477. doi:10.1071/ch9650477Bolto, B., Weiss, D., & Willis, D. (1965). Electronic conduction in polymers. V. Aromatic semiconducting polymers. Australian Journal of Chemistry, 18(4), 487. doi:10.1071/ch9650487Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., & Heeger, A. J. (1977). Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) x. Journal of the Chemical Society, Chemical Communications, (16), 578. doi:10.1039/c39770000578Hammache, H., Makhloufi, L., & Saidani, B. (2003). Corrosion protection of iron by polypyrrole modified by copper using the cementation process. Corrosion Science, 45(9), 2031-2042. doi:10.1016/s0010-938x(03)00043-xMattioli-Belmonte, M., Gabbanelli, F., Marcaccio, M., Giantomassi, F., Tarsi, R., Natali, D., … Biagini, G. (2005). Bio-characterisation of tosylate-doped polypyrrole films for biomedical applications. Materials Science and Engineering: C, 25(1), 43-49. doi:10.1016/j.msec.2004.04.002CAREEM, M. (2004). Dependence of force produced by polypyrrole-based artificial muscles on ionic species involved. Solid State Ionics, 175(1-4), 725-728. doi:10.1016/j.ssi.2004.01.080Ge, D., Tian, X., Qi, R., Huang, S., Mu, J., Hong, S., … Shi, W. (2009). A polypyrrole-based microchip for controlled drug release. Electrochimica Acta, 55(1), 271-275. doi:10.1016/j.electacta.2009.08.049Sharma, R. K., Rastogi, A. C., & Desu, S. B. (2008). Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor. Electrochemistry Communications, 10(2), 268-272. doi:10.1016/j.elecom.2007.12.004Rubio Retama, J., López Cabarcos, E., Mecerreyes, D., & López-Ruiz, B. (2004). Design of an amperometric biosensor using polypyrrole-microgel composites containing glucose oxidase. Biosensors and Bioelectronics, 20(6), 1111-1117. doi:10.1016/j.bios.2004.05.018Wang, L.-X., Li, X.-G., & Yang, Y.-L. (2001). Preparation, properties and applications of polypyrroles. Reactive and Functional Polymers, 47(2), 125-139. doi:10.1016/s1381-5148(00)00079-1Sabouraud, G., Sadki, S., & Brodie, N. (2000). The mechanisms of pyrrole electropolymerization. Chemical Society Reviews, 29(5), 283-293. doi:10.1039/a807124aLi, C., Bai, H., & Shi, G. (2009). Conducting polymer nanomaterials: electrosynthesis and applications. Chemical Society Reviews, 38(8), 2397. doi:10.1039/b816681cBrahim, S. I., Maharajh, D., Narinesingh, D., & Guiseppi-Elie, A. (2002). DESIGN AND CHARACTERIZATION OF A GALACTOSE BIOSENSOR USING A NOVEL POLYPYRROLE-HYDROGEL COMPOSITE MEMBRANE. Analytical Letters, 35(5), 797-812. doi:10.1081/al-120004070Jun, H.-K., Hoh, Y.-S., Lee, B.-S., Lee, S.-T., Lim, J.-O., Lee, D.-D., & Huh, J.-S. (2003). Electrical properties of polypyrrole gas sensors fabricated under various pretreatment conditions. Sensors and Actuators B: Chemical, 96(3), 576-581. doi:10.1016/j.snb.2003.06.002Kisiel, A., Mazur, M., Kuśnieruk, S., Kijewska, K., Krysiński, P., & Michalska, A. (2010). Polypyrrole microcapsules as a transducer for ion-selective electrodes. Electrochemistry Communications, 12(11), 1568-1571. doi:10.1016/j.elecom.2010.08.035Yamamoto, H., Fukuda, M., Isa, I., & Yoshino, K. (1993). Tantalum electrolytic capacitor employing polypyrrole as solid electrolyte. Electronics and Communications in Japan (Part II: Electronics), 76(6), 88-98. doi:10.1002/ecjb.4420760610Yamamoto, H., Oshima, M., Fukuda, M., Isa, I., & Yoshino, K. (1996). Characteristics of aluminium solid electrolytic capacitors using a conducting polymer. Journal of Power Sources, 60(2), 173-177. doi:10.1016/s0378-7753(96)80007-3Sultana, I., Rahman, M. M., Wang, J., Wang, C., Wallace, G. G., & Liu, H.-K. (2012). All-polymer battery system based on polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) and polypyrrole (PPy)/indigo carmine (IC) free standing films. Electrochimica Acta, 83, 209-215. doi:10.1016/j.electacta.2012.08.043Xia, J., Chen, L., & Yanagida, S. (2011). Application of polypyrrole as a counter electrode for a dye-sensitized solar cell. Journal of Materials Chemistry, 21(12), 4644. doi:10.1039/c0jm04116eAlmuntaser, F. M. A., Majumder, S., Baviskar, P. K., Sali, J. V., & Sankapal, B. R. (2017). Synthesis and characterization of polypyrrole and its application for solar cell. Applied Physics A, 123(8). doi:10.1007/s00339-017-1131-yHao, D., Xu, B., & Cai, Z. (2018). Polypyrrole coated knitted fabric for robust wearable sensor and heater. Journal of Materials Science: Materials in Electronics, 29(11), 9218-9226. doi:10.1007/s10854-018-8950-2Lima, R. M. A. P., Alcaraz-Espinoza, J. J., da Silva, F. A. G., & de Oliveira, H. P. (2018). Multifunctional Wearable Electronic Textiles Using Cotton Fibers with Polypyrrole and Carbon Nanotubes. ACS Applied Materials & Interfaces, 10(16), 13783-13795. doi:10.1021/acsami.8b04695Lee, C. Y., Lee, D. E., Jeong, C. K., Hong, Y. K., Shim, J. H., Joo, J., … Yang, H. G. (2002). Electromagnetic interference shielding by using conductive polypyrrole and metal compound coated on fabrics. Polymers for Advanced Technologies, 13(8), 577-583. doi:10.1002/pat.227Håkansson, E., Amiet, A., Nahavandi, S., & Kaynak, A. (2007). Electromagnetic interference shielding and radiation absorption in thin polypyrrole films. European Polymer Journal, 43(1), 205-213. doi:10.1016/j.eurpolymj.2006.10.001Zhao, H., Li, L., Yang, J., & Zhang, Y. (2008). Nanostructured polypyrrole/carbon composite as Pt catalyst support for fuel cell applications. Journal of Power Sources, 184(2), 375-380. doi:10.1016/j.jpowsour.2008.03.024Huang, S.-Y., Ganesan, P., & Popov, B. N. (2009). Development of conducting polypyrrole as corrosion-resistant catalyst support for polymer electrolyte membrane fuel cell (PEMFC) application. Applied Catalysis B: Environmental, 93(1-2), 75-81. doi:10.1016/j.apcatb.2009.09.014Park, H., Kim, Y., Choi, Y. S., Hong, W. H., & Jung, D. (2008). Surface chemistry and physical properties of Nafion/polypyrrole/Pt composite membrane prepared by chemical in situ polymerization for DMFC. Journal of Power Sources, 178(2), 610-619. doi:10.1016/j.jpowsour.2007.08.050Feng, C., Ma, L., Li, F., Mai, H., Lang, X., & Fan, S. (2010). A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Biosensors and Bioelectronics, 25(6), 1516-1520. doi:10.1016/j.bios.2009.10.009Lee, J. Y., Bashur, C. A., Goldstein, A. S., & Schmidt, C. E. (2009). Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials, 30(26), 4325-4335. doi:10.1016/j.biomaterials.2009.04.042Zhou, H., Liu, Z., Liu, X., & Chen, Q. (2016). Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury. Neural Regeneration Research, 11(1), 107. doi:10.4103/1673-5374.175054Aznar-Cervantes, S., Roca, M. I., Martinez, J. G., Meseguer-Olmo, L., Cenis, J. L., Moraleda, J. M., & Otero, T. F. (2012). Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry, 85, 36-43. doi:10.1016/j.bioelechem.2011.11.008George, P. M., Lyckman, A. W., LaVan, D. A., Hegde, A., Leung, Y., Avasare, R., … Sur, M. (2005). Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials, 26(17), 3511-3519. doi:10.1016/j.biomaterials.2004.09.037Uyar, T., Toppare, L., & Hacaloglu, J. (2001). PYROLYSIS OF BF4- DOPED POLYPYRROLE BY DIRECT INSERTION PROBE PYROLYSIS MASS SPECTROMETRY. Journal of Macromolecular Science, Part A, 38(11), 1141-1150. doi:10.1081/ma-100107134Zinger, B., Shaier, P., & Zemel, A. (1991). Flexible polypyrrole/ClO4 films formed in aqueous solutions. Synthetic Metals, 40(3), 283-297. doi:10.1016/0379-6779(91)92070-xPeres, R. C. D., Juliano, V. F., De Paoli, M.-A., Panero, S., & Scrosati, B. (1993). Electrochromic properties of dodecyclbenzenesulfonate doped poly(pyrrole). Electrochimica Acta, 38(7), 869-876. doi:10.1016/0013-4686(93)87003-vDe Paoli, M.-A., Peres, R. C. D., Panero, S., & Scrosati, B. (1992). Properties of electrochemically synthesized polymer electrodes—X. Study of polypyrrole/dodecylbenzene sulfonate. Electrochimica Acta, 37(7), 1173-1182. doi:10.1016/0013-4686(92)85053-nLim, H. K., Lee, S. O., Song, K. J., Kim, S. G., & Kim, K. H. (2005). Synthesis and properties of soluble polypyrrole doped with dodecylbenzenesulfonate and combined with polymeric additive poly(ethylene glycol). Journal of Applied Polymer Science, 97(3), 1170-1175. doi:10.1002/app.21824Carragher, U., & Breslin, C. B. (2018). Polypyrrole doped with dodecylbenzene sulfonate as a protective coating for copper. Electrochimica Acta, 291, 362-372. doi:10.1016/j.electacta.2018.08.155Arribas, C., & Rueda, D. (1996). Preparation of conductive polypyrrole-polystyrene sulfonate by chemical polymerization. Synthetic Metals, 79(1), 23-26. doi:10.1016/0379-6779(96)80125-1Wu, T.-M., Chang, H.-L., & Lin, Y.-W. (2009). Synthesis and characterization of conductive polypyrrole with improved conductivity and processability. Polymer International, 58(9), 1065-1070. doi:10.1002/pi.2634Jin, C., Yang, F., & Yang, W. (2006). Electropolymerization and ion exchange properties of a polypyrrole film doped bypara-toluene sulfonate. Journal of Applied Polymer Science, 101(4), 2518-2522. doi:10.1002/app.23775Kaynak, A. (2009). Decay of electrical conductivity in p-toluene sulfonate doped polypyrrole films. Fibers and Polymers, 10(5), 590-593. doi:10.1007/s12221-010-0590-ySamuelson, L. A., & Druy, M. A. (1986). Kinetics of the degradation of electrical conductivity in polypyrrole. Macromolecules, 19(3), 824-828. doi:10.1021/ma00157a057Hou, H., Yu, C., Liu, X., Yao, Y., Liao, Q., Dai, Z., & Li, D. (2018). Waste-loofah-derived carbon micro/nanoparticles for lithium ion battery anode. Surface Innovations, 6(3), 159-166. doi:10.1680/jsuin.17.00068Sultana, I., Rahman, M. M., Li, S., Wang, J., Wang, C., Wallace, G. G., & Liu, H.-K. (2012). Electrodeposited polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) free-standing film for lithium secondary battery application. Electrochimica Acta, 60, 201-205. doi:10.1016/j.electacta.2011.11.037Jérôme, C., Martinot, L., Strivay, D., Weber, G., & Jérôme, R. (2001). Controlled exchange of metallic cations by polypyrrole-based resins. Synthetic Metals, 118(1-3), 45-55. doi:10.1016/s0379-6779(00)00275-7Zhao, H., Price, W. E., Too, C. O., Wallace, G. G., & Zhou, D. (1996). Parameters influencing transport across conducting electroactive polymer membranes. Journal of Membrane Science, 119(2), 199-212. doi:10.1016/0376-7388(96)00130-5Ansari Khalkhali, R., Price, W. ., & Wallace, G. . (2003). Quartz crystal microbalance studies of the effect of solution temperature on the ion-exchange properties of polypyrrole conducting electroactive polymers. Reactive and Functional Polymers, 56(3), 141-146. doi:10.1016/s1381-5148(03)00055-5Pyo, M., Reynolds, J. R., Warren, L. F., & Marcy, H. O. (1994). Long-term redox switching stability of polypyrrole. Synthetic Metals, 68(1), 71-77. doi:10.1016/0379-6779(94)90149-xMurray, P., Spinks, G. M., Wallace, G. G., & Burford, R. P. (1997). In-situ mechanical properties of tosylate doped (pts) polypyrrole. Synthetic Metals, 84(1-3), 847-848. doi:10.1016/s0379-6779(96)04177-xChengyou, J., & Fenglin, Y. (2006). Ion transport and conformational relaxation of a polypyrrole film in aqueous solutions. Sensors and Actuators B: Chemical, 114(2), 737-739. doi:10.1016/j.snb.2005.06.026Li, S., Qiu, Y., & Guo, X. (2009). Influence of doping anions on the ion exchange behavior of polypyrrole. Journal of Applied Polymer Science, 114(4), 2307-2314. doi:10.1002/app.30721Raudsepp, T., Marandi, M., Tamm, T., Sammelselg, V., & Tamm, J. (2014). Influence of ion-exchange on the electrochemical properties of polypyrrole films. Electrochimica Acta, 122, 79-86. doi:10.1016/j.electacta.2013.08.083Syritski, V., Öpik, A., & Forsén, O. (2003). Ion transport investigations of polypyrroles doped with different anions by EQCM and CER techniques. Electrochimica Acta, 48(10), 1409-1417. doi:10.1016/s0013-4686(03)00018-5Fang, Y., Liu, J., Yu, D. J., Wicksted, J. P., Kalkan, K., Topal, C. O., … Li, J. (2010). Self-supported supercapacitor membranes: Polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition. Journal of Power Sources, 195(2), 674-679. doi:10.1016/j.jpowsour.2009.07.033Qian, T., Yu, C., Zhou, X., Ma, P., Wu, S., Xu, L., & Shen, J. (2014). Ultrasensitive dopamine sensor based on novel molecularly imprinted polypyrrole coated carbon nanotubes. Biosensors and Bioelectronics, 58, 237-241. doi:10.1016/j.bios.2014.02.081Zhang, J., & Zhao, X. S. (2012). Conducting Polymers Directly Coated on Reduced Graphene Oxide Sheets as High-Performance Supercapacitor Electrodes. The Journal of Physical Chemistry C, 116(9), 5420-5426. doi:10.1021/jp211474eLi, W., Zhang, Q., Zheng, G., Seh, Z. W., Yao, H., & Cui, Y. (2013). Understanding the Role of Different Conductive Polymers in Improving the Nanostructured Sulfur Cathode Performance. Nano Letters, 13(11), 5534-5540. doi:10.1021/nl403130hZhu, C., Zhai, J., Wen, D., & Dong, S. (2012). Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. Journal of Materials Chemistry, 22(13), 6300. doi:10.1039/c2jm16699bDing, C., Qian, X., Yu, G., & An, X. (2010). Dopant effect and characterization of polypyrrole-cellulose composites prepared by in situ polymerization process. Cellulose, 17(6), 1067-1077. doi:10.1007/s10570-010-9442-6Yuan, L., Yao, B., Hu, B., Huo, K., Chen, W., & Zhou, J. (2013). Polypyrrole-coated paper for flexible solid-state energy storage. Energy & Environmental Science, 6(2), 470. doi:10.1039/c2ee23977aLu, Y., Tao, P., Zhang, N., & Nie, S. (2020). Preparation and thermal stability evaluation of cellulose nanofibrils from bagasse pulp with differing hemicelluloses contents. Carbohydrate Polymers, 245, 116463. doi:10.1016/j.carbpol.2020.116463Zhang, Y., Hao, N., Lin, X., & Nie, S. (2020). Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: A review. Carbohydrate Polymers, 234, 115888. doi:10.1016/j.carbpol.2020.115888Wang, Y., Sotzing, G. A., & Weiss, R. A. (2008). Preparation of Conductive Polypyrrole/Polyurethane Composite Foams by In situ Polymerization of Pyrrole. Chemistry of Materials, 20(7), 2574-2582. doi:10.1021/cm800005rLunt, J. (1998). Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability, 59(1-3), 145-152. doi:10.1016/s0141-3910(97)00148-1Mróz, P., Białas, S., Mucha, M., & Kaczmarek, H. (2013). Thermogravimetric and DSC testing of poly(lactic acid) nanocomposites. Thermochimica Acta, 573, 186-192. doi:10.1016/j.tca.2013.09.012Araque-Monrós, M. C., Vidaurre, A., Gil-Santos, L., Gironés Bernabé, S., Monleón-Pradas, M., & Más-Estellés, J. (2013). Study of the degradation of a new PLA braided biomaterial in buffer phosphate saline, basic and acid media, intended for the regeneration of tendons and ligaments. Polymer Degradation and Stability, 98(9), 1563-1570. doi:10.1016/j.polymdegradstab.2013.06.031Ramot, Y., Haim-Zada, M., Domb, A. J., & Nyska, A. (2016). Biocompatibility and safety of PLA and its copolymers. Advanced Drug Delivery Reviews, 107, 153-162. doi:10.1016/j.addr.2016.03.012Da Silva, D., Kaduri, M., Poley, M., Adir, O., Krinsky, N., Shainsky-Roitman, J., & Schroeder, A. (2018). Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chemical Engineering Journal, 340, 9-14. doi:10.1016/j.cej.2018.01.010Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019Garlotta, D. (2001). Journal of Polymers and the Environment, 9(2), 63-84. doi:10.1023/a:1020200822435Mofokeng, J. P., Luyt, A. S., Tábi, T., & Kovács, J. (2011). Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. Journal of Thermoplastic Composite Materials, 25(8), 927-948. doi:10.1177/0892705711423291Chieng, B., Ibrahim, N., Yunus, W., & Hussein, M. (2013). Poly(lactic acid)/Poly(ethylene glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets. Polymers, 6(1), 93-104. doi:10.3390/polym6010093Chitte, H. K., Shinde, G. N., Bhat, N. V., & Walunj, V. E. (2011). Synthesis of Polypyrrole Using Ferric Chloride (FeCl<sub>3</sub>) as Oxidant Together with Some Dopants for Use in Gas Sensors. Journal of Sensor Technology, 01(02), 47-56. doi:10.4236/jst.2011.12007Uyar, T., Toppare, L., & Hacaloğlu, J. (2002). Characterization of electrochemically synthesized p-toluene sulfonic acid doped polypyrrole by direct insertion probe pyrolysis mass spectrometry. Journal of Analytical and Applied Pyrolysis, 64(1), 1-13. doi:10.1016/s0165-2370(01)00166-8Schütt, H. J., & Gerdes, E. (1992). Space-charge relaxation in ionicly conducting oxide glasses. I. Model and frequency response. Journal of Non-Crystalline Solids, 144, 1-13. doi:10.1016/s0022-3093(05)80377-1Schütt, H. J., & Gerdes, E. (1992). Space-charge relaxation in ionicly conducting glasses. II. Free carrier concentration and mobility. Journal of Non-Crystalline Solids, 144, 14-20. doi:10.1016/s0022-3093(05)80378-3Sørensen, T. S., Compañ, V., & Diaz-Calleja, R. (1996). Complex permittivity of a film of poly[4-(acryloxy)phenyl-(4-chlorophenyl)methanone] containing free ion impurities and the separation of the contributions from interfacial polarization, Maxwell–Wagner–Sillars effects and dielectric relaxations of the polymer chains. J. Chem. Soc., Faraday Trans., 92(11), 1947-1957. doi:10.1039/ft9969201947Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301Fragiadakis, D., Dou, S., Colby, R. H., & Runt, J. (2009). Molecular mobility and Li+ conduction in polyester copolymer ionomers based on poly(ethylene oxide). The Journal of Chemical Physics, 130(6), 064907. doi:10.1063/1.3063659Chronakis, I. S., Grapenson, S., & Jakob, A. (2006). Conductive polypyrrole nanofibers via electrospinning: Electrical and morphological properties. Poly

    The impact of nationality on the psychophysiological stress response and academic fulfilment in the final degree dissertation

    Get PDF
    The aims of this study were: i. to analyze the effect of nationality on the psychophysiological stress response of physiotherapy last year students in their final degree dissertations; and ii. to analyze the relationship between the stress response and academic results according to nationality. We evaluated the autonomic stress response, cortical arousal, distress subjective perception, and objective and subjective academic fulfilment in Spanish, Italian, and French physiotherapy students during their final degree dissertation. Results showed a large anticipatory anxiety response before the dissertation in the three student groups. Only the Spanish group showed an increased tendency in the habituation process, reducing the psychophysiological stress response during the dissertation, while the Italian and French groups maintained a large sympathetic activation until the end of the dissertation. Cortical arousal and subjective perception of distress were similar in the three nationalities. In addition, no correlation between academic fulfilment and autonomic modulation was found. We concluded that there was no nationality effect in the psychophysiological stress response of physiotherapy last year students in their final degree dissertation, all of them showing a large anticipatory anxiety response

    Engineered axon tracts within tubular biohybrid scaffolds

    Get PDF
    Injuries to the nervous system that involve the disruption of axonal pathways are devastating to the individual and require specific tissue engineering strategies. Here we analyse a cells-biomaterials strategy to overcome the obstacles limiting axon regenerationin vivo, based on the combination of a hyaluronic acid (HA) single-channel tubular conduit filled with poly-L-lactide acid (PLA) fibres in its lumen, with pre-cultured Schwann cells (SCs) as cells supportive of axon extension. The HA conduit and PLA fibres sustain the proliferation of SC, which enhance axon growth acting as a feeder layer and growth factor pumps. The parallel unidirectional ensemble formed by PLA fibres and SC tries to recapitulate the directional features of axonal pathways in the nervous system. A dorsal root ganglion (DRG) explant is planted on one of the conduit's ends to follow axon outgrowth from the DRG. After a 21 d co-culture of the DRG + SC-seeded conduit ensemble, we analyse the axonal extension throughout the conduit by scanning, transmission electronic and confocal microscopy, in order to study the features of SC and the grown axons and their association. The separate effects of SC and PLA fibres on the axon growth are also experimentally addressed. The biohybrid thus produced may be considered a synthetic axonal pathway, and the results could be of use in strategies for the regeneration of axonal tracts
    corecore