20 research outputs found

    Paper based microfluidic platform for single-step detection of mesenchymal stromal cells secreted VEGF

    Get PDF
    [EN] Low cost and user-friendly paper microfluidic devices, combined with DNA-based biosensors with binding capacities for specific molecules, have been proposed for the developing of novel platforms that ease and speed-up the process of cell secretion monitoring. In this work, we present the first cellulose microfluidic paper-based analytical device for the single-step detection of cell secreted Vascular Endothelial Growth Factor through a self-reporting Structure Switching Signaling Aptamer. A three-part Structure Switching Signaling Aptamer was designed with an aptameric sequence specific for VEGF, which provides a quantifiable fluorescent signal through the displacement of a quencher upon VEGF recognition. The VEGF biosensor was integrated in cellulose paper, enabling the homogenous distribution of the sensor in the paper substrate and the detection of as low as 0.34ng of VEGF in 30min through fluorescence intensity analysis. As a proof-of-concept, the biosensor was incorporated in a microfluidic paper-based analytical device format containing a VEGF detection zone and a control zone, which was applied for the detection of cell secreted VEGF in the supernatant of mesenchymal stem cells culture plates, demonstrating its potential use in cell biology research.Authors acknowledge funding support from Basque Government, under Grupos Consolidados with Grant No. IT1271-19, from “Ministerio de Ciencia y Educación de España” under grant PID2020-120313GB-I00 /AIE /10.13039/501100011033, from the University of the Basque Country and the Spanish Government under the program “Margarita Salas” funded by “Unión Europea-Next Generation EU” . LBD and FBL personally acknowledge funds from the DNASURF (H2020-MSCA-RISE-778001) project. The authors thank for technical and human support provided by PhD Maite Alvarez from DNA Bank Service (SGIker) of the University of the Basque Country (UPV/EHU) and European funding (ERDF and ESF). Authors also wish to thank the intellectual and technical assistance from the ICTS “NANBIOSIS”, more specifically by the Drug Formulation Unit (U10) of the CIBER in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN). Authors thank Dr. Alberto Gorrochategui from “Clínica Dermatológica Ercilla (Bilbao)” for providing the hair follicles from where hHF-MSCs were extracted. Finally, authors also wish to thank the technical assistance from the Nanopharmagene research group at the University of the Basque Country (UPV/EHU). FB-L and LBD acknowledge the “Red de Microfluídica Española” RED2018-102829-T

    Naked Eye Y Amelogenin Gene Fragment Detection Using DNAzymes on a Paper-based Device

    Get PDF
    Nowadays, there are strong efforts in developing new technology for rapid detection of specific DNA sequences for environmental monitoring, forensic analysis and rapid biomedical diagnosis applications. That is where microfluidic paper-based analytical devices are positioned as suitable platforms for the development of point of care analytical devices, due to their simple fabrication protocols, ease of use and low cost. Herein, a methodology for in situ single strand DNA detection by using a colorimetric assay based on the formation of a DNAzyme within a paper substrate was developed. A DNAzyme that could only be formed in the presence of a specific sequence of the Y human amelogenin gene was designed. The performance of the DNAzyme was followed colorimetrically first in solution and then in paper substrates. The reaction was found to be specific to the Y fragment selected as analyte. The DNAzyme reaction on paper enabled the unequivocal colorimetric identification of the Y single strand DNA fragment both qualitatively, with the naked eye (143 ng), and quantitatively by image analysis (45.7 ng). As a proof of concept, a microfluidic paper-based device, pre-loaded with all DNAzyme reagents, was characterized and implemented for the simultaneous detection of X and Y single strand DNA fragments.This work was supported by Gobierno de España, Ministerio de Economía y Competitividad, with Grant No. BIO2016-80417-P; funding from Basque Government (Grant: IT1271-19) and European Union funds: DNASURF (H2020-MSCA-RISE-778001). E.A.-H. acknowledges funding from the Basque Government, Department of Education, for predoctoral fellowship 2016

    Microtechnologies for Cell Microenvironment Control and Monitoring

    Get PDF
    A great breadth of questions remains in cellular biology. Some questions cannot be answered using traditional analytical techniques and so demand the development of new tools for research. In the near future, the development of highly integrated microfluidic analytical platforms will enable the acquisition of unknown biological data. These microfluidic systems must allow cell culture under controlled microenvironment and high throughput analysis. For this purpose, the integration of a variable number of newly developed micro- and nano-technologies, which enable control of topography and surface chemistry, soluble factors, mechanical forces and cell-cell contacts, as well as technology for monitoring cell phenotype and genotype with high spatial and temporal resolution will be necessary. These multifunctional devices must be accompanied by appropriate data analysis and management of the expected large datasets generated. The knowledge gained with these platforms has the potential to improve predictive models of the behavior of cells, impacting directly in better therapies for disease treatment. In this review, we give an overview of the microtechnology toolbox available for the design of high throughput microfluidic platforms for cell analysis. We discuss current microtechnologies for cell microenvironment control, different methodologies to create large arrays of cellular systems and finally techniques for monitoring cells in microfluidic devices.E.A.-H. acknowledges funding from the Basque Government, Department of Education, for predoctoral fellowship 2016. M.G.-H. acknowledges funding from the University of the Basque Country UPV/EHU, PIF16/204 predoctoral fellowship "call for recruitment of research personnel in training". J.E.-E. acknowledges funding from the University of the Basque Country UPV/EHU, postdoctoral fellowship ESPPOC 16/65 "Call for recruitment and specialization of Doctor Researchers 2016". M.M.D.P. and L.B.-D., acknowledge funding support from University of the Basque Country UPV/EHU, UFI11/32, and from Gobierno Vasco under Grupos Consolidados with Grant No. IT998-16. F.B.-L. acknowledges funding support from the Ramon y Cajal Programme (Ministerio de Economia y Competitividad), Spain. F.B.-L. and L.B.-D. acknowledge funding support from the European Union's Seventh Framework Programme (FP7) for Research, Technological Development and Demonstration under Grant agreement No. 604241 as well as Gobierno Vasco, Dpto. Industria, Innovacion, Comercio y Turismo under ELKARTEK 2015 with Grant No. KK-2015/0000088

    Cell Patterning Technology on Polymethyl Methacrylate through Controlled Physicochemical and Biochemical Functionalization

    Get PDF
    In recent years, innovative cell-based biosensing systems have been developed, showing impact in healthcare and life science research. Now, there is a need to design mass-production processes to enable their commercialization and reach society. However, current protocols for their fabrication employ materials that are not optimal for industrial production, and their preparation requires several chemical coating steps, resulting in cumbersome protocols. We have developed a simplified two-step method for generating controlled cell patterns on PMMA, a durable and transparent material frequently employed in the mass manufacturing of microfluidic devices. It involves air plasma and microcontact printing. This approach allows the formation of well-defined cell arrays on PMMA without the need for blocking agents to define the patterns. Patterns of various adherent cell types in dozens of individual cell cultures, allowing the regulation of cell–material and cell–cell interactions, were developed. These cell patterns were integrated into a microfluidic device, and their viability for more than 20 h under controlled flow conditions was demonstrated. This work demonstrated the potential to adapt polymeric cytophobic materials to simple fabrication protocols of cell-based microsystems, leveraging the possibilities for commercialization.This research was funded by the Basque Government, under Grupos Consolidados with grant no. IT1633-22 and “Ministerio de Ciencia y Educación de España” under grant PID2020-120313GB-I00/AIE/10.13039/501100011033

    CEACAM7 polymorphisms predict genetic predisposition to mortality in post-surgical septic shock patients

    Get PDF
    We carried out a retrospective exploratory study on 173 patients who underwent major surgery and developed septic shock after surgery. Our findings suggest that CEACAM7 rs1001578, rs10409040, and rs889365 polymorphisms could influence septic shock-related death in individuals who underwent major surgery.This work has been supported by grants given by Instituto de Salud Carlos III (grant number PI15/01451 to ET), “Gerencia de Salud, Consejería de Sanidad, Junta de Castilla y Leon” [grant number GRS 463/A/10 and 773/A/13 to ET], and PFIZER [grant number CT25-ESP01-01 to SR]. MAJS and AFR are supported by “Instituto de Salud Carlos III” [grant numbers CP17CIII/00007 and CP14CIII/00010, respectively]S

    Effectiveness of Fosfomycin for the Treatment of Multidrug-Resistant Escherichia coli Bacteremic Urinary Tract Infections

    Get PDF
    IMPORTANCE The consumption of broad-spectrum drugs has increased as a consequence of the spread of multidrug-resistant (MDR) Escherichia coli. Finding alternatives for these infections is critical, for which some neglected drugs may be an option. OBJECTIVE To determine whether fosfomycin is noninferior to ceftriaxone or meropenem in the targeted treatment of bacteremic urinary tract infections (bUTIs) due to MDR E coli. DESIGN, SETTING, AND PARTICIPANTS This multicenter, randomized, pragmatic, open clinical trial was conducted at 22 Spanish hospitals from June 2014 to December 2018. Eligible participants were adult patients with bacteremic urinary tract infections due to MDR E coli; 161 of 1578 screened patients were randomized and followed up for 60 days. Data were analyzed in May 2021. INTERVENTIONS Patients were randomized 1 to 1 to receive intravenous fosfomycin disodium at 4 g every 6 hours (70 participants) or a comparator (ceftriaxone or meropenem if resistant; 73 participants) with the option to switch to oral fosfomycin trometamol for the fosfomycin group or an active oral drug or pa renteral ertapenem for the comparator group after 4 days. MAIN OUTCOMES AND MEASURES The primary outcome was clinical and microbiological cure (CMC) 5 to 7 days after finalization of treatment; a noninferiority margin of 7% was considered. RESULTS Among 143 patients in the modified intention-to-treat population (median [IQR] age, 72 [62-81] years; 73 [51.0%] women), 48 of 70 patients (68.6%) treated with fosfomycin and 57 of 73 patients (78.1%) treated with comparators reached CMC (risk difference, -9.4 percentage points; 1-sided 95% CI, -21.5 to infinity percentage points; P = .10). While clinical or microbiological failure occurred among 10 patients (14.3%) treated with fosfomycin and 14 patients (19.7%) treated with comparators (risk difference, -5.4 percentage points; 1-sided 95% CI. -infinity to 4.9; percentage points; P = .19), an increased rate of adverse event-related discontinuations occurred with fosfomycin vs comparators (6 discontinuations [8.5%] vs 0 discontinuations; P = .006). In an exploratory analysis among a subset of 38 patients who underwent rectal colonization studies, patients treated with fosfomycin acquired a new ceftriaxone-resistant or meropenem-resistant gram-negative bacteria at a decreased rate compared with patients treated with comparators (0 of 21 patients vs 4 of 17 patients [23.5%]; 1-sided P = .01). CONCLUSIONS AND RELEVANCE This study found that fosfomycin did not demonstrate noninferiority to comparators as targeted treatment of bUTI from MDR E coli; this was due to an increased rate of adverse event-related discontinuations. This finding suggests that fosfomycin may be considered for selected patients with these infections

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Spatiotemporal Characteristics of the Largest HIV-1 CRF02_AG Outbreak in Spain: Evidence for Onward Transmissions

    Get PDF
    Background and Aim: The circulating recombinant form 02_AG (CRF02_AG) is the predominant clade among the human immunodeficiency virus type-1 (HIV-1) non-Bs with a prevalence of 5.97% (95% Confidence Interval-CI: 5.41–6.57%) across Spain. Our aim was to estimate the levels of regional clustering for CRF02_AG and the spatiotemporal characteristics of the largest CRF02_AG subepidemic in Spain.Methods: We studied 396 CRF02_AG sequences obtained from HIV-1 diagnosed patients during 2000–2014 from 10 autonomous communities of Spain. Phylogenetic analysis was performed on the 391 CRF02_AG sequences along with all globally sampled CRF02_AG sequences (N = 3,302) as references. Phylodynamic and phylogeographic analysis was performed to the largest CRF02_AG monophyletic cluster by a Bayesian method in BEAST v1.8.0 and by reconstructing ancestral states using the criterion of parsimony in Mesquite v3.4, respectively.Results: The HIV-1 CRF02_AG prevalence differed across Spanish autonomous communities we sampled from (p < 0.001). Phylogenetic analysis revealed that 52.7% of the CRF02_AG sequences formed 56 monophyletic clusters, with a range of 2–79 sequences. The CRF02_AG regional dispersal differed across Spain (p = 0.003), as suggested by monophyletic clustering. For the largest monophyletic cluster (subepidemic) (N = 79), 49.4% of the clustered sequences originated from Madrid, while most sequences (51.9%) had been obtained from men having sex with men (MSM). Molecular clock analysis suggested that the origin (tMRCA) of the CRF02_AG subepidemic was in 2002 (median estimate; 95% Highest Posterior Density-HPD interval: 1999–2004). Additionally, we found significant clustering within the CRF02_AG subepidemic according to the ethnic origin.Conclusion: CRF02_AG has been introduced as a result of multiple introductions in Spain, following regional dispersal in several cases. We showed that CRF02_AG transmissions were mostly due to regional dispersal in Spain. The hot-spot for the largest CRF02_AG regional subepidemic in Spain was in Madrid associated with MSM transmission risk group. The existence of subepidemics suggest that several spillovers occurred from Madrid to other areas. CRF02_AG sequences from Hispanics were clustered in a separate subclade suggesting no linkage between the local and Hispanic subepidemics
    corecore