297 research outputs found

    Local and average fields inside surface-disordered waveguides: Resonances in the one-dimensional Anderson localization regime

    Get PDF
    We investigate the one-dimensional propagation of waves in the Anderson localization regime, for a single-mode, surface disordered waveguide. We make use of both an analytical formulation and rigorous numerical simulation calculations. The occurrence of anomalously large transmission coefficients for given realizations and/or frequencies is studied, revealing huge field intensity concentration inside the disordered waveguide. The analytically predicted s-like dependence of the average intensity, being in good agreement with the numerical results for moderately long systems, fails to explain the intensity distribution observed deep in the localized regime. The average contribution to the field intensity from the resonances that are above a threshold transmission coefficient TcT_{c} is a broad distribution with a large maximum at/near mid-waveguide, depending universally (for given TcT_{c}) on the ratio of the length of the disorder segment to the localization length, L/ξL/\xi. The same universality is observed in the spatial distribution of the intensity inside typical (non-resonant with respect to the transmission coefficient) realizations, presenting a s-like shape similar to that of the total average intensity for TcT_{c} close to 1, which decays faster the lower is TcT_{c}. Evidence is given of the self-averaging nature of the random quantity log[I(x)]/x1/ξ\log[I(x)]/x\simeq -1/\xi. Higher-order moments of the intensity are also shown.Comment: 9 pages, 9 figure

    Magnetic Field Effects on the Transport Properties of One-sided Rough Wires

    Full text link
    We present a detailed numerical analysis of the effect of a magnetic field on the transport properties of a `small-NN' one-sided surface disordered wire. When time reversal symmetry is broken due to a magnetic field BB, we find a strong increase with BB not only of the localization length ξ\xi but also of the mean free path \ell caused by boundary states. Despite this, the universal relationship between \ell and ξ\xi does hold. We also analyze the conductance distribution at the metal-insulator crossover, finding a very good agreement with Random Matrix Theory with two fluctuating channels within the Circular Orthogonal(Unitary) Ensemble in absence(presence) of BBComment: 5 pages, 4 figures, to appear in Phys. Rev.

    Peroxidase expression in a cereal cyst nematode (Heterodera avenae) resistant hexaploid wheat line.

    Full text link
    The incompatible interaction between plant and pathogen is often determined by the hypersensitive reaction (HR). This response is associated with accumulation of reactive oxygen species (ROS), which results in adverse growth conditions for pathogens. Two major mechanisms involving either NADPH oxidases or peroxidases have been proposed for generation of ROS. Peroxidases (PER, EC 1.11.1.7), present in all land plants, are members of a large multigenic family with high number of isoforms involved in a broad range of physiological processes. PER genes, which are expressed in nematode feeding sites, have been identified in several plant species (Zacheo et al. 1997). A strong correlation between HR and PER activities at four and seven days post nematode infection, was detected in roots of wheat lines carrying Cre2, Cre5 (from Ae. ventricosa) or Cre7 (from Ae. triuncialis) Heterodera avenae resistance genes (Andrés et al. 2001; Montes et al. 2003, 2004). We have studied changes in root of peroxidase mRNAs levels after infection by H. avenae of a wheat/Ae. ven¬tricosa introgression line (H-93-8) carrying Cre2 (Delibes et al. 1993). We also report and classify the predicted protein sequences derived from complete peroxidase transcripts

    Analysis of mass transfer capacity in raceway reactors

    Get PDF
    In the present work, a methodology is proposed to determine the mass transfer capacity in existing microalgae raceway reactors to minimize excessive dissolved oxygen accumulation that would otherwise reduce biomass productivity. The methodology has been validated using a 100 m2 raceway reactor operated in semi-continuous mode. The relevance of each raceway reactor section was evaluated as well as the oxygen transfer capacity in the sump to different air flow rates. The results confirm that dissolved oxygen accumulates in raceway reactors if no appropriate mass transfer systems are provided. Therefore, mass transfer in the sump is the main contributor to oxygen removal in these systems. The variation in the volumetric mass transfer coefficient in the sump as a function of the gas flow rate, and therefore the superficial gas velocity in the sump, has been studied and modelled. Moreover, the developed model has been used to estimate the mass transfer requirements in the sump as a function of the target dissolved oxygen concentration and the oxygen production rate. The proposed methodology allows us to determine and optimize the mass transfer capacity in the sump for any existing raceway reactor. Moreover, it is a powerful tool for the optimization of existing reactors as well as for the design optimization of new reactors

    Dense circumnuclear molecular gas in starburst galaxies

    Get PDF
    We present results from a study of the dense circumnuclear molecular gas of starburst galaxies. The study aims to investigate the interplay between starbursts, active galactic nuclei and molecular gas.We characterize the dense gas traced by HCN, HCO and HNC and examine its kinematics in the circumnuclear regions of nine starburst galaxies observed with the Australia Telescope Compact Array. We detect HCN (1-0) and HCO (1-0) in seven of the nine galaxies and HNC (1-0) in four. Approximately 7 arcsec resolution maps of the circumnuclear molecular gas are presented. The velocity-integrated intensity ratios, HCO (1-0)/HCN (1-0) and HNC (1-0)/HCN (1-0), are calculated. Using these integrated intensity ratios and spatial intensity ratio maps, we identify photon-dominated regions (PDRs) in NGC 1097, NGC 1365 and NGC 1808. We find no galaxy which shows the PDR signature in only one part of the observed nuclear region.We also observe unusually strong HNC emission in NGC 5236, but it is not strong enough to be consistent with X-ray-dominated region chemistry. Rotation curves are derived for five of the galaxies and dynamical mass estimates of the inner regions of three of the galaxies are made. © 2016 The Authors.This project was supported by the Brother Vincent Cotter Award for Physics (UNSW). LVM has been supported by Grant AYA2011-30491-C02-01 co-financed by MICINN and FEDER funds, and the Junta de Andalucia (Spain) grants P08-FQM-4205 and TIC-114. WAB acknowledges the support as a Visiting Professor of the Chinese Academy of Sciences (KJZD-EW-T01). The research leading to these results has received funding from the European Community's Seventh Framework Programme (/FP7/2007-2013/) under grant agreement No 229517.Peer Reviewe

    Effects of the 4N(v) chromosome from Aegilops ventricosa on agronomic and quality traits in bread wheat

    Get PDF
    Advanced wheat lines carrying the Hessian fly resistance gene H27 were obtained by backcrossing the wheat/Aegilops ventricosa introgression line, H-93-33, to commercial wheat cultivars as recurrent parents. The Acph-N v 1 marker linked to the gene H27 on the 4Nv chromosome of this line was used for marker assisted selection. Advanced lines were evaluated for Hessian fly resistance in field and growth chamber tests, and for other agronomic traits during several crop seasons at different localities of Spain. The hessian fly resistance levels of lines carrying the 4Nv chromosome introgression (4D/4Nv substitution and recombination lines that previously were classified by in situ hybridisation) were high, but always lower than that of their Ae. ventricosa progenitor. Introgression lines had higher grain yields in infested field trials than those without the 4Nv chromosome and their susceptible parents, but lower grain yields under high yield potential conditions. The 4Nv introgression was also associated with later heading, and lower tiller and grain numbers/m2 . In addition, it was associated with longer and more lax spikes, and higher values of grain weight and grain protein content. However, the glutenin and gliadin expression, as well as the bread-making performance, were similar to those of their recurrent parent

    Impact of a COVID-19 Outbreak in an Elderly Care Home after Primary Vaccination

    Get PDF
    [EN] Elderly care home residents are particularly vulnerable to COVID-19 due to immunesenescence, pre-existing medical conditions, and the risk of transmission from staff and visitors. This study aimed to describe the outcomes of a COVID-19 outbreak in a long-term care facility for elderly persons following the initial vaccination. A single-center, retrospective, observational design was used to analyze the variables associated with hospitalization and death rate by logistic regression. Adjusted odds ratios (aOR) and their 95% confidence intervals (CI) were calculated. Sixty-eight residents received the first dose of the COVID-19 vaccine. Despite being negative six days after vaccination, the performance of a second test 4 days later revealed 51 positives (75.0%) among residents and 18 among workers (56.3%). A total of 65 of the 68 residents (95.58%) had positive results with symptoms, whereas 34.9% required hospitalization, and 25.8% died. The best-fitting model to explain the distribution of cases reflects three points at the time of infection.. The time from vaccination to symptom onset explains the hospitalization and mortality rates since a day elapsed halves the risk of hospitalization (aOR = 0.57; CI = 0.38−0.75) and the risk of death by a quarter (aOR = 0.74; CI = 0.63−0.88). Nursing homes present an elevated risk of transmission and severity of SARS-CoV-2 infection. Although vaccination reduces the risk of hospitalization and death, extreme prevention and control measures are essential in these institutions despite the high vaccination coverage.S

    Ballistic Localization in Quasi-1D Waveguides with Rough Surfaces

    Full text link
    Structure of eigenstates in a periodic quasi-1D waveguide with a rough surface is studied both analytically and numerically. We have found a large number of "regular" eigenstates for any high energy. They result in a very slow convergence to the classical limit in which the eigenstates are expected to be completely ergodic. As a consequence, localization properties of eigenstates originated from unperturbed transverse channels with low indexes, are strongly localized (delocalized) in the momentum (coordinate) representation. These eigenstates were found to have a quite unexpeted form that manifests a kind of "repulsion" from the rough surface. Our results indicate that standard statistical approaches for ballistic localization in such waveguides seem to be unappropriate.Comment: 5 pages, 4 figure

    On-Surface Driven Formal Michael Addition Produces m-Polyaniline Oligomers on Pt(111)

    Get PDF
    On-surface synthesis is emerging as a highly rational bottom-up methodology for the synthesis of molecular structures that are unattainable or complex to obtain by wet chemistry. Here, oligomers of meta-polyaniline, a known ferromagnetic polymer, were synthesized from para-aminophenol building-blocks via an unexpected and highly specific on-surface formal 1, 4 Michael-type addition at the meta position, driven by the reduction of the aminophenol molecule. We rationalize this dehydrogenation and coupling reaction mechanism with a combination of in situ scanning tunneling and non-contact atomic force microscopies, high-resolution synchrotron-based X-ray photoemission spectroscopy and first-principles calculations. This study demonstrates the capability of surfaces to selectively modify local molecular conditions to redirect well-established synthetic routes, such as Michael coupling, towards the rational synthesis of new covalent nanostructures
    corecore