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Local and average fields inside surface-disordered waveguides: Resonances in the
one-dimensional Anderson localization regime
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We investigate the one-dimensional propagation of waves in the Anderson localization regime, for a single-
mode, surface disordered waveguide. We make use of both an analytical formulation and rigorous numerical
simulation calculations. The occurrence of anomalously large transmission coefficients for given realizations
and/or frequencies is studied, revealing huge field intensity concentration inside the disordered waveguide. The
analytically predicted dependence of the average intensity, being in good agreement with the numerical results
for moderately long systems, fails to explain the intensity distribution observed deep in the localized regime.
The average contribution to the field intensity from the resonances that are above a threshold transmission
coefficientTc is a broad distribution with a large maximum at/near mid-waveguide, depending universally~for
a given Tc) on the ratio of the length of the disorder segment to the localization length,L/j. The same
universality is observed in the spatial distribution of the intensity inside typical~nonresonant with respect to the
transmission coefficient! realizations, presenting a shape similar to that of the total average intensity, but with
a faster decay. Evidence is given of the self-averaging nature of the random quantity ln@I(x)#/x.21/j. Higher-
order moments of the intensity are also shown.
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I. INTRODUCTION

There are two well-known manifestations of strong loc
ization of classical waves in one-dimensional~1D! open dis-
ordered systems: exponentially small~with respect to the
length of the system! transmission through typical~most
probable! random realizations, and high transparency at r
~exponentially low-probable! ones. The high transparency
due to the so called stochastic resonances that are acco
nied by a large concentration~localization! of energy in rela-
tively small areas inside the system. It was shown in Re
that in a semi-infinite random medium the wave amplitude
the resonances can exceed~with nonzero probability! any
given value. In the 1980s this phenomenon was studied
tensively as applied to electrons, light, elastic, and acous
waves2,3 ~also see Refs. 4–7 and references therein!. In the
last few years, after a long hiatus, interest in stochastic re
nances in random media has rekindled in the context of
dom lasing,8–11 wherein resonances might play the role
effective confining cavities inducing lasing action when ga
is introduced.

We investigate the one-dimensional propagation of e
tromagnetic waves in the strong localization regime. In p
ticular, the occurrence of anomalously large transmission
efficients for given realizations and/or frequencies~resonant
or quasi-transparent realizations! is studied, with emphasis
on the field intensity distributions along the direction
propagation. For that purpose, we make use of both
analytical formulation and rigorous numerical simulati
calculations.

We consider a single-mode waveguide with random
rough walls. This structure, being a typical example o
one-dimensional disordered system, has the advantage t
0163-1829/2003/68~7!/075103~8!/$20.00 68 0751
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can be easily prepared using standard equipment~microwave
waveguides or fiber optics!, and enables~unlike a random
stack of dielectric layers! one to directly measure the wav
field inside the structure. Similar multimode systems ha
been studied in recent years to investigate various local
tion and transport phenomena appearing in the propaga
of waves through disordered media.12–18

Our numerical calculations exploit the invariant embe
ding equation formulation for a multimode surfac
disordered waveguide,12,14,19which we have extended to ac
count for the field inside the disordered region. T
numerical results are compared with analytical formulas
tained by using the invariant embedding method and ave
ing over rapid phase variations.4,19 Both methods are de
scribed in Sec. II. Local and average field intensities
presented in Secs. III and IV, respectively; the conclusio
drawn from them are summarized in Sec. V.

II. SCATTERING MODEL

A. Field distribution outside the disordered region: reflection
and transmission amplitudes

The scattering geometry is depicted in Fig. 1. We seek
solutions to the scalar Helmholtz equation in the forms~out-
side the region 0<x<L)

Cn~x,r !5(
m

km
21/2xm~r !e2 ikmxtmn , x,0, ~1a!

Cn~x,r !5Cn
0~x,r !1(

m
km

21/2xm~r !eikmxr mn , x.L,

~1b!
©2003 The American Physical Society03-1
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with

Cn
0~x,r !5kn

21/2xn~r !e2 iknx. ~1c!

The indexesm andn in the reflection (r mn) and transmission
(tmn) amplitudes correspond to the outgoing and incom
modes, respectively.xn(r ) are the eigenfunctions of th
transverse wave equation, characterized by transverse
mentumkn , so that the longitudinal wavevector compone
kn ~along the propagation direction! is

kn5@~v/c!22kn
2#1/2, ~2!

with v being the wave frequency.
We consider the Dirichlet boundary condition~vanishing

of the field at the boundary! on a slightly perturbed wave
guide surface,z denoting the random perturbation, and e
pand it about the unperturbed surfaceR5Rs, which is trans-
lationally invariant along thex axis @R5(x,r )#, so that

C~R5Rs!50, for x,0 andx.L, ~3a!

52z~R!•
]C~R!

]R
, for 0<x<L.

~3b!

Alternatively, the latter boundary condition can be associa
to a waveguide surface with a random admittance.

It can be shown that the matrices of reflection and tra
mission coefficients satisfy the following differentia
equations:14

dr̂

dL
5

i

2
~e2 i k̂L1 r̂ eik̂L!v̂~e2 i k̂L1eik̂Lr̂ !, ~4a!

d t̂

dL
5

i

2
t̂ eik̂Lv̂~e2 i k̂L1eik̂Lr̂ !, ~4b!

with k̂5diag(kn) and

vmn5 R dsfm~s!z~L,s!fn~s!,

fn~s!5kn
21/2n~r s!•F]xn~r !

]r G
r5rs

;

it has been assumed thatz5zn. The explicit form of the
differential ds over the cross section~oriented! surface ele-

FIG. 1. Illustration of the scattering geometry of the surfac
disordered waveguide.
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mentds5nds depends on the geometry under considerati
The reflection and transmission coefficients are defined b

Rmn5ur mnu2,Tmn5utmnu2, ~5!

which yield the intensity coupled into themth outgoing
channel in the reflection and transmission, respectively, fo
given nth incoming channel.

B. Field distribution inside the disordered region

By invoking Green’s theorem, the expression for the fie
inside the waveguide (0<x<L) can be written as

Cn~x,r !5Cn
0~x,r !

1E
0

L

dx8 R ds8Cn~x8,r s8!
]G0~x8,x;r s8 ,r !

]n8
,

~6!

where Cn
05kn

21/2xn(r )e2 iknx. Substituting the Green’s
function

G0~x,r ;x8r 8!5 (
m51

N

~2ikm!21xm~r !xm~r 8!eikmux2x8u

~7!

into Eq.~6!, we end up with the following expression for th
scattered field inside:

Cn
sc~x,r !5Cn~x,r !2Cn

0~x,r !

5E
0

L

dx8 R ds8Cn~x8,r s8!

3 (
m51

N

~2ikm!21xm~r !
]xm~r s8!

]n8
eikmux2x8u,

~8!

where Cn
05kn

21/2xn(r )e2 iknx. Rearranging the integrand

and handling the phase factoreikmux2x8u appropriately by
splitting the integral along the waveguide*0

L5*0
x1*x

L , one
obtains

Cn
sc~x,r !5 (

m51

N

~2ikm!21/2xm~r !

3H E
0

x

dx8eikm(x2x8) R ds8Cn~x8,r s8!
]xm~r s8!

]n8

1E
x

L

dx8e2 ikm(x2x8) R ds8Cn~x8,r s8!
]xm~r s8!

]n8
J .

~9!

Factoring out the phase factors defining waves propaga
right and left, and splitting again the integral of the seco
term, we get

-

3-2
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Cn
sc~x,r !5 (

m51

N
xm~r !

km
1/2 H eikmx

2ikm
1/2E0

x

dx8

3 R ds8Cn~x8,r s8!
]xm~r s8!

]n8
e2 ikmx8

1
e2 ikmx

2ikm
1/2S E0

L

dx82E
0

x

dx8D
3 R ds8Cn~x8,r s8!

]xm~r s8!

]n8
eikmx8J . ~10!

At this point, we define the local amplitudes of the scatte
waves propagating along thex axis in positive and negative
directions, respectively,r(x) andt(x):

rmn
L ~x!5~2ikm

1/2!21E
0

x

dx8

3 R ds8Cn~x8,r s8!
]xm~r s8!

]n8
e2 ikmx8, ~11a!

tmn
L ~x!5tmn~L !2dmn2~2ikm

1/2!21E
0

x

dx8

3 R ds8Cn~x8,r s8!
]xm~r s8!

]n8
eikmx8, ~11b!

so that

Cn
sc~R!5 (

m51

N

km
21/2xn~r !$rmn

L ~x!eikmx1tmn
L ~x!e2 ikmx%.

~12!

Then, by differentiating Eqs.~11!, and taking into accoun
the boundary condition~3b! in the integrands, with the aid o
Eq. ~12! again, a set of coupled differential equations f
rmn

L (x) andtmn
L (x) is derived:

dr̂L

dx
5

i

2
e2 i k̂xv̂@e2 i k̂x~ Î 1 t̂L!1eik̂xr̂L#, ~13a!

dt̂L

dx
52

i

2
eik̂xv̂@e2 i k̂x~ Î 1 t̂L!1eik̂xr̂L#. ~13b!

The corresponding boundary conditions satisfied byrmn
L (x)

andtmn
L (x) at the end points of the waveguide are

rmn
L ~x50!50,tmn

L ~x50!5tmn~L !2dmn , ~14!

rmn
L ~x5L !5r mn~L !,tmn

L ~x5L !50. ~15!

C. Numerical calculations

We have chosen for the numerical simulations the sa
geometry as in Ref. 14: two parallel, perfectly reflecti
planes atz50 and z5d with random deviationsz5z(x)
07510
d

r

e

given by a 1D stochastic process with Gaussian statis
with zero mean and a Gaussian surface power spectrum

g~Q!5d2p1/2a exp@2~Qa!2/4#, ~16!

whered is the rms height anda is the transverse correlatio
length. The corresponding transverse eigenfunctions are
given by

xn~z!5~2/d!1/2sin~knz!, kn5pn/d, ~17!

and impurity matrix~5! by

vmn~L !5
2

d

knkm

~knkm!1/2
z~L !. ~18!

In order to model 1D wave propagation in our calculation
the waveguide supports only one mode, its thicknessd being
such thatv̄[vd/(2pc)'0.75. Consequently, all subscrip
referring to mode indexes are suppressed hereafter. Note
the inhomogeneity depends on one coordinate only, so
there is no scattering in directions other than back and
ward along thex axis.

The linear differential equations for the reflection a
transmission amplitudes~4! are solved numerically by mean
of the Runge-Kutta method; this is done for a given reali
tion z(x) from L50 up to a maximum lengthL5Lmax ~cf.
Ref. 14!. Then, for a fixed length of the disordered segme
L, the same standard numerical techniques are employe
the system of first-order differential Eqs.~13b! in order to
obtain thelocal reflection and transmission amplitudes, wi
the help of boundary conditions~15! involving the reflection
and transmission amplitudes@r (L),t(L)#, previously ob-
tained. Finally, the field intensity is calculated from the inc
dent and scattered fields inside@Eqs.~1c! and ~12!#:

I ~x!5uC~x,d/2!/C0~x,d/2!u2. ~19!

D. Analytical approach: Rapid phase averaging

To calculate analytically the average intensity^I (x)& in-
side a one-dimensional disordered system, we introduce
function

R~x!5
r~x!

t~x!11
exp~2ikx!, ~20!

that satisfies the nonlinear equation

i
dR~x!

dx
522kR~x!1

V~x!

2k
@11R~x!#2, ~21!

wherek is the longitudinal wave number of the propagati
mode (k5@(v/c)22(p/d)2#1/2). The random scattering po
tential, V(x), in the case under consideration, i.e., in
single-mode waveguide with a randomly rough surface,
the form

V~x!52
2p

d3
z~x!. ~22!

Then the intensity can be expressed as4
3-3
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I ~x!5I 0@12uR~x!u2#
11uR~x!u212R@R~x!#

12uR~x!u2
. ~23!

Obviously,R(L)5r (L)exp(2ikL), wherer (L) is the total
reflection coefficient of a single-mode waveguide defined
Eq. ~4a!. It is convenient, following Ref. 4, to introduce tw
functions,u(x) andw(x), so that

R~x!5Au~x!21

u~x!11
exp@ iw~x!#. ~24!

Substitution of Eq.~24! into Eq. ~23! yields

I ~x!5
2I 0

u~L !11
@u~x!1Au2~x!21cosw~x!#. ~25!

If the scattering is weak enough, so thatl scat@l, the
random phase,w(x), is uniformly distributed over@0,2p#;
We have verified this assumption through numerical calcu
tions of the probability density function ofw(x) ~not shown
here!, which indeed yield a uniform distribution in all case
studied below. Obviously, to get rid of the rapid~on the scale
of order ofl) oscillations of the phase one has to integr
~average! Eq. ~25! over an interval £ that satisfies the in
equality l!£! l scat. This rapid phase averaging~RPA!
yields

I ~x!5
2I 0u~x!

u~L !11
. ~26!

The two-point probability distribution function
p2(uL ,L;ux ,x), necessary for the ensemble averaging of
intensity I (x) @Eq. ~26!#, can be also calculated under th
assumptions thatl scat@l and that the scattering potential
a d-correlated Gaussian random process such that

^dV~x!dV~x8!&5Dk2d~x2x8!. ~27!

Note that in this casel scat;D21. Then, the smoothed~RPA!
mean intensity distribution inside a one-dimensional rand
system can be presented in the form20,21

^I ~x!&5p exp@D~x2L/4!#E
0

`

dm
sinhmp

cosh2mp
exp~2m2DL !

3S cos 2mDx1
sin 2mDx

2m D . ~28!

In what follows, comparisons with the numerical calcu
tions will be made on the basis of the average~macroscopic!
properties, regardless of the~microscopic! details of the dis-
order. Namely, the localization lengthj, defined from
^ ln T&;2L/j, will be used as matching parameter, which
this RPA approach is given byj5D21.

III. SINGLE REALIZATIONS: RESONANCES

First, we identify the roughness and waveguide para
eters that lead to the onset of Anderson localization. Thi
done in Fig. 2 by plotting the length dependence of^ ln T& at
07510
y
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e
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frequencyv̄50.75 ~single mode! for several rms heightsd
and a fixed correlation lengtha/d50.2. The resulting linear
decay is the fingerprint of Anderson localization, the dec
rate yielding the localization length. The fitted values ofj for
eachd are included in Fig. 2.

With the aid of the latter results, we choose a set of
rameters that ensure 1D localization (L@j): a/d50.2, d/d
50.05, and L51500d'5.5j. We then calculate the
frequency dependence~in a narrow frequency range! of
the transmission coefficientT(v) for a given realization,
as shown in Fig. 3~a!. Extremely large fluctuations are ob
served with narrow spikes appearing over a fairly negligi
background. The latter background yields the expected
sponse at typical~high probability! frequencies, since

^ ln T(v̄50.75)&;25.2 and^T(v̄50.75)&;0.062. The low-
probability peaks in Fig. 3~a! correspond to narrowreso-
nances or quasitransparent frequenciesat which the trans-
mission coefficient can be even 1.

The transmission in the vicinity of one such transpar

FIG. 2. Average logarithm of the transmission coefficie
over N5105 realizations as a function of the disorder leng
L for surface roughness parametersa/d50.2 and d/d
50.0125,0.025,0.04,0.05,0.08, and 0.1. The localization lengthj
resulting from fits to linear decays are shown.

FIG. 3. ~a! Spectral dependence of the transmission coeffici
for a given disorder realization witha/d50.2, d/d50.05, and
L/d51500 in a narrow frequency range showing several reson
frequencies.~b! A single resonance is zoomed in and fitted to
Lorentzian ~dashed curve, indistinguishable from the numeric
result!.
3-4
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frequency (v̄050.75069) is presented in detail in Fig. 3~b!.
Note the frequency scale, revealing how narrow the re
nance is. By fitting the numerical result to a Lorentzian@also
shown in Fig. 3~b!#, we obtain the half-width at half-
maximumG/v0'2.431026. Resonances behave like hig
finesse cavity modes with large associatedQ factors (;3
3105), which may lead to practical applications as in ra
dom lasing.9–11

The field intensities inside the waveguide for frequenc
at the resonance, mid-resonance, and out-of-resonanc@v̄
50.75069,0.7506875, and 0.7506, respectively, in Fig. 3~b!#
are shown in Fig. 4, where the envelope and average ofI (x)
over rapid oscillations~period;p/k) are plotted. The inci-
dent mode impinges on the disordered segment atx5L
propagating from right~positive x axis! to left ~negativex
axis!. At resonance@see Fig. 4~a!#, high intensity concentra
tion takes place over a region around the center of the di
dered segment of the waveguide (I;200 with a peak ofI
;400), its particular shape being a characteristic feature
the given resonance. The field intensity at the end points~not
discernible in the figure! is I (x50,L)51, as expected (T
51,R50). At mid resonance@see Fig. 4~b!#, the field inten-
sity distribution maintains its shape, but the overall heigh
decreased by nearly a factor of 2. The reflected and trans
ted coefficients are retrieved at the end points:I (x5L)5u1
1r exp(ikL)u2 ~envelope'2.25 and mean'1.5) and I (x
50)5T'0.25.

In contrast, an absolutely different behavior has been
served away from resonance, i.e. at typical~nontransparent!
frequencies~or realizations!, as seen in Fig. 4~c!. The field
energy is not localized, but decays from its initial valueI (x
5L) ~envelope'4 and mean'2) to the exponentially
small valueI (x50)5T;exp(2L/j).

FIG. 4. Field intensity along the disorder realization used in F

3~b! ~with a/d50.2, d/d50.05, and L/d51500) at ~a! v̄

[vd/(2pc)50.75069 ~resonance!, ~b! v̄50.7506875 ~mid-

resonance!, and~c! v̄50.7506~out of resonance, typical!. To sup-
press rapid spatial oscillations, the envelopes~upper curves! and
spatial averages~lower curves! are shown. The incident wave i
coming from the right end.
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IV. TOTAL, TYPICAL AND RESONANT
AVERAGE FIELDS

We now turn to the analysis of the ensemble average
the field intensity^I (x)& along the disordered region. Nu
merical simulation calculations are carried out for fixedv̄
50.75, L, and statistical parameters of the roughness. Av
ages have been done overN5105 realizations, separating
typical and resonant realizations according to a thresh
value of the mean transmission coefficientTc .

Figure 5~a! shows^I (x)& for a/d50.2, d/d50.05, and
various values of the disordered segment lengthL/d
51200,1500,2250, and 3000.~Recall that the incident mode
impinges on the disordered segment from the right endx
5L, which we have shifted to the origin for the sake
clarity.! In all cases, the mean intensity decays monotonica
towards the exit of the disordered waveguide, the decay
being smaller the longer is the waveguide~provided that
L/j@1). The contribution from resonances to the mean
tensity, ^I (x)& reso, yielding transmission coefficients large
thanTc50.4, is shown in Fig. 5~b!. Broad distributions are
found with large maximum field intensities lying near th
center of the disordered waveguide. The contribution fr
typical realizations (.90%), ^I (x)& typ is plotted in Fig.
5~c!; a qualitative behavior similar to that of the total me
intensity is observed, except for a faster decay rate.

In order to improve our understanding of the physics u
derlying the formation of the field intensity patterns, we ha
replotted^I (x)& by rescaling thex dependence in units of th
disordered segment lengthL, x̄5(x2L/2)/L. In addition to
that, calculations have been done for different roughness
rametersd/d50.05,0.08 and 0.1~fixed a/d50.2), by choos-
ing L in such a way that the ratioL/j remains fixed~the

.
FIG. 5. ~a! Spatial distributions of average field intensity (N

5105 realizations! for a/d50.2, d/d50.05, and disorder lengths
L/d5550 ~curvesA), 1500~curvesB), 2250~curvesC), and 3000
~curves D). All curves have been shifted to make coincide t
incoming ends atx50. The contributions from resonant realiza
tions ~with T>Tc50.1) and the remaining typical realizations a
shown in~b! and ~c!, respectively.
3-5
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corresponding values of the localization lengthj are given in
Fig. 2!. The resultinĝ I (x)& are presented in Fig. 6: The RP
quasianalytical results obtained from Eq.~28! are also
included.

Several conclusions can be drawn from the latter resu
First, ^I ( x̄)& exhibits in all cases auniversal behavior, de-
pending only on the ratioL/j regardless of the microscopi
details of the 1D disorder. Actually, as shown in the inset
Fig. 2, we have observed that universality can be pus
further, so that ^I ( x̃)& @with x̃5(x2L/2)/(Lj)1/2] is a
unique function. Second, for moderate and even largeL/j,
the RPA expression predicts very accurately the mean fi
distribution obtained numerically; a monotonic decay fro

^I ( x̄50.5)&511^R(L)& at the incoming end tô I ( x̄5
20.5)&5^T(L)&, crossing the valuê I &51 through the
middle of the disordered segmentx̄50, and being steepe
the larger isL/j. Third, deep into the 1D Anderson localiza
tion regime,L/j>11 in Fig. 6, the numerical results reveal
departure from the RPA predictions, as evidenced by the s
of the ^I &51 crossing towards the incoming end. We ha
investigated the physical origin of this discrepancy by e
forcing in the numerical calculations some of the assum
tions made in the RPA approach. First, uncorrelated diso
has been used in the numerical calculations, with sim
results to those for the Gaussian correlation. Rapid ph
averaging has also been carried out at each realization
to ensemble averaging, yielding no significant differenc
Thus neither finite correlation nor RPA can give rise to t
observed discrepancy.

At this point, it is important to emphasize that plotted
Fig. 6 is the ensemble average of the intensity, which i
non-self-averaging~strongly fluctuating! quantity. To gain in-
sight into the behavior of the field intensity pattern at diffe

FIG. 6. Spatial distributions of average field intensity (N5105

realizations! as a function of renormalized positionx̄[(x2L/2)/L
for a/d50.2 andd/d50.05 ~circles!, 0.08 ~squares!, and 0.1~tri-
angles!. In each case, several disordered lengths are considere
cording toL/j50.5,1,2,4.4,8.2, and 11. Solid curves represent
quasi-analytical, RPA results. Inset: the RPA results only as a fu

tion of x̃[(x2L/2)/(Lj)1/2.
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ent individual realizations, we have separated typical a
resonant realizations according to a threshold value,Tc , of
the mean transmission coefficient. The contribution fro
resonances to the mean intensity,^I (x)& reso, and ~rescaled!

^I ( x̄)& reso, yielding transmission coefficients larger thanTc
50.4, is shown in Figs. 5~b! and 7. One can see that th
contribution from resonances also exhibits universal beh
ior in the form of a broad distribution with a relatively larg
maxima within the disordered segment, being determined
only by the ratioL/j ~as in the case of the total average!, but
also by the the cutoff parameterTc . Actually, from the com-
parison of the curves for̂I ( x̄)& reso with different Tc in Fig.
7, it follows thatTc fixes the position of the maximum in
tensity, whereas the ratioL/j sets the precise value of th
maxima. For fixedTc @see Fig. 7~b!#, the maximum intensity
is higher for largerL/j; namely, stronger resonances a
needed for longer disorder in order to couple the sa
amount of energy through the system~or similarly, to tunnel
through a wider barrier!. Relaxing the definition of resonanc
@lowering Tc ; see Fig. 7~a!#, leads to asymmetrica

^I ( x̄)& reso distributions with maxima shifted from the cente
to the incoming end of the disorder segment.

The contribution to the average intensity from typical r
alizations (.90%), ^I (x)& typ , plotted in Fig. 5~c!, also de-
pends universally onL/j and Tc ~not shown here!, and
shows a qualitative behavior similar to^I (x)&, with a faster
decay, as expected. Interestingly, neither^I (x)& nor ^I (x)& typ
decay exponentially, but rather manifest as-like dependence,
as mentioned above. This means that, no matter how long
realization is@i.e., how small exp(2L/j) is#, a lengthening of

ac-
e
c-

FIG. 7. Same as in Fig. 6 but for the contribution from reson
realizations with~a! Tc50.01 (L/j511) andTc50.4 (L/j58.2),
and ~b! Tc50.4 for L/j51,2,4.4, and 5.5.
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LOCAL AND AVERAGE FIELDS INSIDE SURFACE- . . . PHYSICAL REVIEW B 68, 075103 ~2003!
the system~increase ofL with the localization length kep
fixed! leads, surprisingly enough, to essential changes in
energy distribution inside. Namely, provided that the stren
of the disorder is fixed, the longer a randomly disorde
sample is, the slower is the decay of the intensity@both
^I (x)& and ^I (x)& typ] from the incoming end deep into th
sample@this is neatly observed in Figs. 5~a! and 5~c!#. In
other words, the ‘‘penetration depth’’ of botĥI & and ^I & typ
into a 1D random system is independent of the strength
scattering, which seems to be somewhat counterintui
~one would expect, for fixedj, identical penetration depth
with longer tails for longer waveguides!. This effect is, how-
ever, dependent on the valueTc in the definition of̂ I & typ , as
illustrated in Fig. 8: with the cutoff decreasing, the slow
decaying part of̂ I (x)& typ near the incoming end (x5L)
diminishes, the distribution thus decaying more abrup
This dependence onTc is more intuitive, since it can be
expected that, for a smaller outgoing energyTc ~normalized
to the incoming energy!, the incident wave penetrates le
into the disordered waveguide.

Interestingly, the intensity for a single typical realizatio
for which T;^T& appears to decay approximately expone
tially I;exp(2x/j), as seen in Fig. 8~its oscillations are
smoothed spatially on a log scale!. This is in accordance with
the behavior of the average logarithm of the intensity, wh
fluctuates less strongly than the intensity itself and fits v
accuratelŷ ln I(x)&.2ux2Lu/j ~see Fig. 8!, revealing its self-
averaging nature. From these results, it is inferred that
s-like shape of the average intensity^I & @which departs quali-
tatively and quantitatively from the distribution exp^lnI(x)&
.exp(2ux2Lu/j)] is due to the contribution of scarce~low-
probable! resonant realizations where the field is strong
localized, its amplitude being substantially~even orders of
magnitude! larger than that of the incident wave.

Finally, we have calculated higher-order moments of
mean intensitŷ I n( x̄)&. In Fig. 9, the numerical results ar
shown in the casen52,4 for some of the disordere
waveguides considered above. The most remarkable fea
is the broad, resonantlike shape, revealing the increasing~for
higher n) influence of ~low-probability! resonances, with

FIG. 8. Spatial distributions of the contribution to the avera
field intensity ~log scale! from typical realizations witha/d50.2,
d/d50.05 ~circles!, 0.08 ~squares!, and 0.1~triangles!, and fixed
disordered lengthL/j55.5, for Tc51024, 0.004, 0.1, 0.4, and 1
~the latter equivalent tôI (x)&, thin solid curve!. Also included are:
exp̂ lnI(x)& ~dashed curve! and I (x) ~spatially averaged in a log
scale! for a single, typical realization~thick solid curve!.
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huge field intensities. The extremely large fluctuations
the field intensity induced by such resonances are resp
sible for the enhancement of higher-order momen

^I n( x̄)&@^I ( x̄)&n; this phenomenon should be more noto
ous near mid-waveguide and for largerL/j andn, as indeed
confirmed by our results in Fig. 9.

V. CONCLUDING REMARKS

To summarize, we have developed a formalism to cal
late the field inside surface-disordered waveguides, simila
that of the invariant embedding equations for the reflect
and transmission coefficients. By applying it to 2D sing
mode waveguides with planar walls and Gaussian-correla
surface roughness, we have investigated the occurrenc
resonances in the 1D Anderson localization regime, with e
phasis on the resulting field intensity distribution both f
given realizations and ensemble averages.

We have examined the frequency dependence of the tr
mission coefficientT(v) for different realizations; it exhibits
a well-defined resonance-type behavior inherent to
localization regime. This enables us to separate typical r
izations, characterized by very low~as expected from the
averagê ln T&;2L/j) values ofT and a monotonically de-
caying intensity, from resonances with transmission coe
cients close to one and extremely high intensity maxima~lo-
calization! in a region around the center of the system.

Numerical simulation calculations for the mean field i
tensity ^I (x)& along the disordered segment of the wav
guide reveal a universal behavior completely determined
the ratioL/j: A smooth decay from the initial value of^I &
;11^R(L)& at the incoming end, to the outgoing mea
transmitted field intensitŷ I &;^T(L)&, crossing the value
^I &;1 at or near the center of the disordered segment.
moderately strong disorderL/j*1, the quasianalytica

FIG. 9. Same as in Fig. 6 but for the fourth~a! and second~b!
moments of the field intensity, andL/j52,4.4,8.2. For the sake o
clarity, the results forL/j58.2 in ~a! have been spatially average
over ;10d.
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JOSÉA. SÁNCHEZ-GIL AND VALENTIN FREILIKHER PHYSICAL REVIEW B 68, 075103 ~2003!
~RPA! prediction~28! fully agrees with the numerical calcu
lations. However, for strong disorderL/j@1, the numerical
results exhibit, unlike the RPA result, a shift of the midpo
(^I &;1) towards the incoming edge.

The contribution to^I (x)& from resonant realization
~those yielding anomalously large transmission above
threshold valueTc) also manifests a universality characte
ized by the parametersL/j and Tc : Its shape is a broad
distribution whose maximum value, which is larger for stro
ger disorder, shifts from the center towards the incom
edge with decreasingTc . On the other hand, we have foun
that the contribution from such low-probability resonanc
become more dramatic in higher-order moments of the t
intensity distribution.

The contribution from typical realizations to the total a
erage,̂ I (x)& typ , depends on the cutoff valueTc . For Tc not
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