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Local and average fields inside surface-disordered waveguides: Resonances in the
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We investigate the one-dimensional propagation of waves in the Anderson localization regime, for a single-
mode, surface disordered waveguide. We make use of both an analytical formulation and rigorous numerical
simulation calculations. The occurrence of anomalously large transmission coefficients for given realizations
and/or frequencies is studied, revealing huge field intensity concentration inside the disordered waveguide. The
analytically predicted dependence of the average intensity, being in good agreement with the numerical results
for moderately long systems, fails to explain the intensity distribution observed deep in the localized regime.
The average contribution to the field intensity from the resonances that are above a threshold transmission
coefficientT, is a broad distribution with a large maximum at/near mid-waveguide, depending univéfsally
a givenT.) on the ratio of the length of the disorder segment to the localization lehgth, The same
universality is observed in the spatial distribution of the intensity inside typicairesonant with respect to the
transmission coefficieptealizations, presenting a shape similar to that of the total average intensity, but with
a faster decay. Evidence is given of the self-averaging nature of the random quditify/ia=—1/£. Higher-
order moments of the intensity are also shown.
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[. INTRODUCTION can be easily prepared using standard equiprfreitrowave
waveguides or fiber optigsand enablegunlike a random
There are two well-known manifestations of strong local-stack of dielectric layejsone to directly measure the wave
ization of classical waves in one-dimensioiHD) open dis- field inside the structure. Similar multimode systems have
ordered systems: exponentially smallith respect to the been studied in recent years to investigate various localiza-
length of the systeintransmission through typicalmost tion and transport phenomena appearing in the propagation
probablé random realizations, and high transparency at raref waves through disordered medfa'®
(exponentially low-probableones. The high transparency is ~ Our numerical calculations exploit the invariant embed-
due to the so called stochastic resonances that are accompghing equation formulation for a multimode surface-
nied by a large concentratigtocalization of energy in rela-  disordered waveguide;***°which we have extended to ac-
tively small areas inside the system. It was shown in Ref. ount for the field inside the disordered region. The
that in a semi-infinite random medium the wave amplitude anumerical results are compared with analytical formulas ob-
the resonances can exce@slith nonzero probability any  tained by using the invariant embedding method and averag-
given value. In the 1980s this phenomenon was studied inng over rapid phase variatioAs? Both methods are de-
tensively as applied to electrons, light, elastic, and acousticalcribed in Sec. Il. Local and average field intensities are
waveg? (also see Refs. 4—7 and references thgréinthe  presented in Secs. Il and 1V, respectively; the conclusions
last few years, after a long hiatus, interest in stochastic resairawn from them are summarized in Sec. V.
nances in random media has rekindled in the context of ran-

dom lasing’™** wherein resonances might play the role of Il. SCATTERING MODEL

effective confining cavities inducing lasing action when gain

is introduced. A. Field distribution outside the disordered region: reflection
We investigate the one-dimensional propagation of elec- and transmission amplitudes

tromagnetic waves in the Strong localization regime. In par-  The Scattering geometry is depicted in F|g 1. We seek for

ticular, the occurrence of anomalously large transmission cosp|utions to the scalar Helmholtz equation in the forjmst-
efficients for given realizations and/or frequenciessonant  gjge the region &x=<L)

or quasi-transparent realizations studied, with emphasis
on the field intensity distributions along the direction of _
propagation. For that purpose, we make use of both an Wo(x,1) =2 kn"xm(ne *mt,,, x<0, (1a
analytical formulation and rigorous numerical simulation m
calculations.
We consider a single-mode waveguide with randoml _ 0 —1/2 ik X
rough walls. This stru?:ture, being a tgypical example of Z Palxr) \P”(X'rH% K Xm(1) €T Tmn, - X>L,
one-dimensional disordered system, has the advantage that it (1b)
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FIG. 1. lllustration of the scattering geometry of the surface-
disordered waveguide.

with
Wox,1) =K, Yxn(r)e k. (10

The indexesn andn in the reflection (,,,) and transmission

(tmn) amplitudes correspond to the outgoing and incoming

modes, respectivelyy,(r) are the eigenfunctions of the

transverse wave equation, characterized by transverse mo-

mentumck,, so that the longitudinal wavevector component
k, (along the propagation directipis

kn=[(w/c)?—Kk3]"?,

with o being the wave frequency.

We consider the Dirichlet boundary conditigvanishing
of the field at the boundajyon a slightly perturbed wave-
guide surface{ denoting the random perturbation, and ex-
pand it about the unperturbed surfd&e Ry, which is trans-
lationally invariant along the axis[R=(x,r)], so that

2

V(R=Ry)=0, forx<0 andx>L, (39
R TV (R) for O L
=— . X<
UR) R or x=L.
(3b)

Alternatively, the latter boundary condition can be associated

to a waveguide surface with a random admittance.

It can be shown that the matrices of reflection and trans
mission coefficients satisfy the following differential
equations”

dr 0 oo

—dL=E(e"kL+re"‘L)v(e"kL+e"‘Lr), (4a)
S T
—dL=Ete"‘Lv(e"kL+e'kLr), (4b)

with k=diag(k,) and
Umn— édqum(S){(L,S)qbn(S),

dxn(r)
ar

¢n<s>=kn1’2n<rs>-[

r=rg

it has been assumed thét¢{n. The explicit form of the
differential ds over the cross sectioforiented surface ele-
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mentds=nds depends on the geometry under consideration.
The reflection and transmission coefficients are defined by:

[tmnl?, (5

which yield the intensity coupled into theth outgoing
channel in the reflection and transmission, respectively, for a
given nth incoming channel.

Rnn= |rmn|27Tmn

B. Field distribution inside the disordered region

By invoking Green’s theorem, the expression for the field
inside the waveguide @x=<L) can be written as

Wo(x,r)=%0(x,r)

L IGo(X', X;rl,r
+J dx’ éds"Pn(x’,rg)O(—S),
0 an’
(6)

where W=k 12 (r)e *n*  Substituting the Green’s
function

N
Go(x,r;x'r")= Zl (2iKym) ™ Lxm(F) xm(r" ) KmX 'l
7

into Eqg.(6), we end up with the following expression for the
scattered field inside:

WX, 1) =W (X,r) —PAX,T)

L
=f dx’ éds’\lfn(x’,ré)
0
N

ﬁXm(rs) eikm|X7X’|,
!

X D (2K "ty ———
m=1 an

_ ®

where ¥0=k- 12 (r)e " Rearranging the integrand,
and handling the phase factef*m* X'l appropriately by

splitting the integral along the waveguidg= [§+ [~ , one

obtains

N
2, (2ikm) " oxm(r)

|

L , )
+J dx’ e km(x=x") éds"lfn(x’,rg)
X

WR(x,r) =

‘?Xm(ré)
an’

X . ,
X Jodx’e'km(x—x) fﬁ ds' W, (x",rg)

&Xm(ré)
o' |’
9

Factoring out the phase factors defining waves propagating
right and left, and splitting again the integral of the second
term, we get
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N x(F) [ € x given by a 1D stochastic process with Gaussian statistics
Wi(x,r)= > AL —f ! with zero mean and a Gaussian surface power spectrum
m=1 kp? | 2ikp?Jo
9(Q)=&*r"aexd — (Qa)*/4], (16)
X %ds’\l’n( i Xm( 5) e ikmx’ where § is the rms height and is the transverse correlation
length. The corresponding transverse eigenfunctions are thus
- given by
2|k1/2<J dx’ —J dX) xn(2)=(2/d)Y%sin(k,2), Kk,=mn/d, 17

and impurity matrix(5) by
fﬁdw oy XD xm< s> ] 10

d
At this point, we define the local amplitudes of the scattered (Knkm)
waves propagating along theaxis in positive and negative In order to model 1D wave propagation in our calculations,
directions, respectively(x) and 7(x): the waveguide supports only one mode, its thickreelssing

« such thatw= wd/(27c)~0.75. Consequently, all subscripts
L = (2ikY2)-1 ’ referring to mode indexes are suppressed hereafter. Note that
Pt~ 21k3 [ "ax _ _ .

0 the inhomogeneity depends on one coordinate only, so that
there is no scattering in directions other than back and for-
ward along thex axis.

The linear differential equations for the reflection and
transmission amplituded) are solved numerically by means
. g [ of the Runge-Kutta method; this is done for a given realiza-
Tmn(X) = tmn(L) = Smn— (2iky?) f dx’ tion £(x) from L=0 up to a maximum length =L 1, (cf.
0 Ref. 14. Then, for a fixed length of the disordered segment
Ixm( ) L, the same standard numerical techniques are employed for
3@ ds' W, (x',rl)——— s . (11b the system of first-order differential Eq€L3b) in order to
an’ obtain thelocal reflection and transmission amplitudes, with
the help of boundary conditior(45) involving the reflection

Umn(L)= 1/2§(|-) (18)

jgds W (X r)——— Xm( S) e k' (119

so that and transmission amplitudgs (L),t(L)], previously ob-
N tained. Finally, the field intensity is calculated from the inci-
WS(R)= >, ko Y2xn(1){ph (x)ekm+ 7- (x)e~km¥). dent and scattered fields insifiegs. (1c) and (12)]:
m=1
(12 I(x)=|W¥(x,d/2)/¥°(x,d/2)|?. (19

Then, by differentiating Eqg11), and taking into account
the boundary conditiofBb) in the integrands, with the aid of
Eqg. (12) again, a set of coupled differential equations for To calculate analytically the average intensjtyx)) in-

D. Analytical approach: Rapid phase averaging

men(x) and rhm(x) is derived: side a one-dimensional disordered system, we introduce the
) function
" _ | miogreibnia st efpl), (139 p(x)
dx 2 ' = i
R(x) T(x)+1eXp(2|kX)’ (20)
drt 0 L that satisfies th l ti
= Ee"‘xv[e"kx(l L)+ eRL), (13D at satisfies the nonlinear equation
dR(x) V(x) ,

The corresponding boundary conditions satisfiedopy(x) =g = ~2kRX)+ = ~[1+ RO (21

and Trl}m(X) at the end points of the waveguide are i o ]
wherek is the longitudinal wave number of the propagating

P (x=0)=0,7" (Xx=0)=tm(L) = S (149  mode k=[(w/c)?>— (m/d)?]"). The random scattering po-
tential, V(x), in the case under consideration, i.e., in a
pran(X=L)=Trmn(L), 75 (x=L)=0. (15)  single-mode waveguide with a randomly rough surface, has
the form

C. Numerical calculations

ar
We have chosen for the numerical simulations the same V(x)=- gﬁx)- (22
geometry as in Ref. 14: two parallel, perfectly reflecting
planes atz=0 andz=d with random deviationg= {(x) Then the intensity can be expressef] as
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0 ———T—
1+|R(x)| 24+ 2R[R(X)] R 81d=0.0125 3
— _ 2 R =0.0125, §/d> 15007
[(X)=1o[1—|R(x)|“] - RO . (23 N 80,025, 5o
Obviously,R(L) =r(L)exp(dkL), wherer(L) is the total E L
reflection coefficient of a single-mode waveguide defined by ~Ar
Eq. (49). It is convenient, following Ref. 4, to introduce two C .
functions,u(x) and ¢(x), so that -6 L ST '
! ! 0 500 1000 1500
Lid
ux)—1
R(x)= u(x)_l_leXF{'(P(X)]- (24) FIG. 2. Average logarithm of the transmission coefficient
over N=10" realizations as a function of the disorder length
Substitution of Eq(24) into Eq. (23) yields L for surface roughness parametera/d=0.2 and é&/d

o) =0.0125,0.025,0.04,0.05,0.08, and 0.1. The localization len§ths
I(x)= u(L)i 1[u(x)+ \/mco&p(x)]. (25) resulting from fits to linear decays are shown.
frequency;=0.75 (single modg for several rms height$
and a fixed correlation lengtw/d=0.2. The resulting linear
decay is the fingerprint of Anderson localization, the decay
rate yielding the localization length. The fitted values ¢éor
each$é are included in Fig. 2.

If the scattering is weak enough, so tHat,=>\, the
random phasep(x), is uniformly distributed ovef0,27];
We have verified this assumption through numerical calcula
tions of the probability density function a#(x) (not shown
here, which indeed yield a uniform distribution in all cases With the aid of the latter results, we choose a set of pa-
studied below. Obviously, to get rid of the rafimh the scale rameters that ensure 1D Iocalizatio’ln% £): ald=0.2, 5/d
of order of\) oscillations of the phase one has to integrate_ 0.05, and L=15001~5.5¢. We then Calculat'e the

(avergg& Eqg. (25 over an inte'rval £ that satisfi.es the in- frequency dependencén a narrow frequency rangeof
equality N<€<lcq. This rapid phase averaginRPA)  ihe transmission coefficierif(w) for a given realization,

yields as shown in Fig. @). Extremely large fluctuations are ob-
21,U(x) served with narrow spikes appearing over a fairly negligible
[(x)= u(Eﬁ' (26) background. The latter background yields the expected re-

sponse at typical(high probability frequencies, since

The two-point probability distribution  function, (InT(@=0.75))~—5.2 and(T(w=0.75))~0.062. The low-
p,(u ,L;uy,X), necessary for the ensemble averaging of the?robability peaks in Fig. @) correspond to narroweso-
intensity 1 (x) [Eq. (26)], can be also calculated under the N@nces or quasitransparent frequenciswhich the trans-
assumptions thdt.,=\ and that the scattering potential is Mission coefficient can be even 1.

a 5-correlated Gaussian random process such that The transmission in the vicinity of one such transparent
(8V(x)8V(x'))=Dk?5(x—x). 27) 1 AL A A
I (a
Note that in this cask,.,~ D ~*. Then, the smoothe@RPA) 0.8~

mean intensity distribution inside a one-dimensional random
system can be presented in the fé?it

04
(I(x))=7-reX|c1[D(x—L/4)]JO d#::;ﬁexp(—ﬁDL) o.i | JA/\AN“I |

0.6

T(w)

0.744 0.748 0.752 0.756
sin2uDx od/(2rc)
X| cos 2,LLDX+ T) (28) 1 — . . . | . .
r ® ]
In what follows, comparisons with the numerical calcula- g 05E ]
tions will be made on the basis of the averdgecroscopig &~ C ]

properties, regardless of tlimicroscopig details of the dis-
order. Namely, the localization lengtl§, defined from 0 075068I
(InT)~—L/& will be used as matching parameter, which in ' wd/(2nc)
this RPA approach is given biy=D 1.

0.7507

FIG. 3. (a) Spectral dependence of the transmission coefficient
I. SINGLE REALIZATIONS: RESONANCES for a given disorder realization witla/d=0.2, §/d=0.05, and
L/d=1500 in a narrow frequency range showing several resonant
First, we identify the roughness and waveguide paramfrequencies(b) A single resonance is zoomed in and fitted to a
eters that lead to the onset of Anderson localization. This igorentzian (dashed curve, indistinguishable from the numerical
done in Fig. 2 by plotting the length dependence€lofT) at  resul.
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FIG. 4. Field intensity along the disorder realization used in Fig. FIG. 5. (a) Spatial distributions of average field intensityl (

3(b) (with a/d=0.2, 6/d=0.05, and L/d=1500) at (& ®  _1¢ realizations for a/d=0.2, 5/d=0.05, and disorder lengths:
=wd/(27c)=0.75069 (resonanck (b) ©=0.7506875 (mid- | /d=550(curvesA), 1500(curvesB), 2250(curvesC), and 3000
resonancg and(c) »=0.7506(out of resonance, typicalTo sup-  (curvesD). All curves have been shifted to make coincide the
press rapid spatial oscillations, the envelogegper curvesand  incoming ends ak=0. The contributions from resonant realiza-
spatial averageslower curve$ are shown. The incident wave is tions (with T=T;=0.1) and the remaining typical realizations are

coming from the right end. shown in(b) and(c), respectively.

frequency 6020.75069) is presented in detail in Figb IV. TOTAL, TYPICAL AND RESONANT

Note the frequency scale, revealing how narrow the reso- AVERAGE FIELDS

nance is. By fitting the numerical result to a LorentZialso )

shown in Fig. 8b)], we obtain the half-width at half- We now turn to the analysis of the ensemble average of

maximumI/wy~2.4x 10~ 6. Resonances behave like high- the field intensity(I(x)) along the disordered region. Nu-

finesse cavity modes with large associat@dactors (~3 merical simulation calculations are carried out for fixed

X 10°), which may lead to practical applications as in ran-=0.75, L, and statistical parameters of the roughness. Aver-

dom lasing’~** ages have been done ovii=10° realizations, separating
The field intensities inside the waveguide for frequenciegypical and resonant realizations according to a threshold

at the resonance, mid-resonance, and out-of-resonfamce Value of the mean transmission coefficidnit.
=0.75069,0.7506875, and 0.7506, respectively, in Fig)]3 Figure %a) shows(lI(x)) for a/d=0.2, 6/d=0.05, and
are shown in Fig. 4, where the envelope and averagéx)f various values of the disordered segment lengtrd
over rapid oscillationgperiod ~ 7r/k) are plotted. The inci- = 1200,1500,2250, and 300@Recall that the incident mode
dent mode impinges on the disordered segmenk=at.  impinges on the disordered segment from the right end,
propagating from rightpositive x axis) to left (negativex =L, which we have shifted to the origin for the sake of
axi9). At resonancésee Fig. 4a)], high intensity concentra- clarity,) In all cases, the mean intensity decays monotonically
tion takes place over a region around the center of the disofowards the exit of the disordered waveguide, the decay rate
dered segment of the Waveguidb\_(zoo with a peak of being smaller the Ionger is the Wavegui(*m'ovided that
~400), its particular shape being a characteristic feature of/£>1). The contribution from resonances to the mean in-
the given resonance. The field intensity at the end péimas  tensity, (I (X))reso, Yielding transmission coefficients larger
discernible in the figureis I(x=0,L)=1, as expectedT  thanT.=0.4, is shown in Fig. &). Broad distributions are
=1,R=0). At mid resonancésee Fig. 4b)], the field inten-  found with large maximum field intensities lying near the
sity distribution maintains its shape, but the overall height iscenter of the disordered waveguide. The contribution from
decreased by nearly a factor of 2. The reflected and transmitypical realizations ¥90%), (I(X))y, is plotted in Fig.
ted coefficients are retrieved at the end poinfs=L)=|1  5(c); a qualitative behavior similar to that of the total mean
+r exp(kL)|? (envelope~2.25 and mean~1.5) andI(x intensity is observed, except for a faster decay rate.
=0)=T~0.25. In order to improve our understanding of the physics un-
In contrast, an absolutely different behavior has been obderlying the formation of the field intensity patterns, we have
served away from resonance, i.e. at typigentransparept  replotted(i(x)) by rescaling thex dependence in units of the
frequencieqor realizationg as seen in Fig. @). The field disordered segment length x=(x—L/2)/L. In addition to
energy is not localized, but decays from its initial valfg  that, calculations have been done for different roughness pa-
=L) (envelope=~4 and mean~2) to the exponentially rameterss/d=0.05,0.08 and 0.{fixeda/d=0.2), by choos-
small valuel (x=0)=T~exp(~L/&). ing L in such a way that the ratia/¢ remains fixed(the
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2 151 @]

L 2 . i

1.5 ¥10¢ ]

St ~ Tt ]

/’Q\ s (x-Li2)(LE)"? ] §' . .

1 i < S5+ % -

ST ] C 70 81d=0.05, &/d=274 ]
- 1 C O 8/d=0.08, E/d=110

o &d=0.05,E/d=274 L (b) 1
o $/d=0.08,&/d=110 J 6 — ]
A §d=0.1,Ed=70 : ]
1 I 11 1 1 I 11 1 AI I 11 1 1 ] % : :
-0.25 0 0.25 0.5 ~> 4r .
(x-L/2)IL = ;
e S . ~ C ]
FIG. 6. Spatial distributions of average field intensity=t 10° ~ 2 C

realization$ as a function of renormalized positio?az(x—L/Z)/L L/E=1 N

for a/d=0.2 and&/d=0.05 (circles, 0.08 (squarey and 0.1(tri- | | | -
angles. In each case, several disordered lengths are considered ac- N Y Y Y Y
cording toL/¢=0.5,1,2,4.4,8.2, and 11. Solid curves represent the 0.5 -0.25 0 0.25 0.5
quasi-analytical, RPA results. Inset: the RPA results only as a func- (X-L/Z)/L

tion of x=(x—L/2)/(L&)Y2

FIG. 7. Same as in Fig. 6 but for the contribution from resonant
corresponding values of the localization lengtare given in  realizations with(a) T,=0.01 (L/é=11) andT.=0.4 (L/§=8.2),
Fig. 2. The resulting | (x)) are presented in Fig. 6: The RPA and(b) T;=0.4 forL/{=1,2,4.4, and 5.5.
guasianalytical results obtained from E@8) are also
included. ent individual realizations, we have separated typical and

Several conclusions can be drawn from the latter resultsesonant realizations according to a threshold valye, of

First, <|(;)> exhibits in all cases aniversal behavigrde- the mean transmission coefficient. The contribution from
pending only on the ratit/¢ regardless of the microscopic resonances to the mean intensity(x))eso, and(rescaled
details of the 1D disorder. Actually, as shown in the inset in(l(x)),.so, Yielding transmission coefficients larger th@p
Fig. 2, we have observed that universality can be pushee-0.4, is shown in Figs. ) and 7. One can see that the
further, so that(I(x)) [with X=(x—L/2)/(L§)¥] is a contribution from resonances also exhibits universal behav-
unique function. Second, for moderate and even larke ior in the form of a broad distribution with a relatively large
the RPA expression predicts very accurately the mean fielnaxima within the disordered segment, being determined not
distribution obtained numerically; a monotonic decay fromonly by the ratioL/¢ (as in the case of the total averagaut
(I (;: 0.5))=1+(R(L)) at the incoming end tq(l (;: also by the the cutoff paramete . Actually, from the com-
—0.5))=(T(L)), crossing the valugl)=1 through the parison of the curves fafl (x))eso With different T, in Fig.

middle of the disordered segmext=0, and being steeper 7, it follows that T, fixes the position of the maximum in-

the larger isL/£. Third, deep into the 1D Anderson localiza- €NSity, whereas the ratib/¢ sets the precise value of the
tion regime,L/é=11 in Fig. 6, the numerical results reveal a Maxima. For fixedr; [see Fig. T)], the maximum intensity
departure from the RPA predictions, as evidenced by the shiff Nigher for largerL/¢; namely, stronger resonances are
of the (1)=1 crossing towards the incoming end. We haveneeded for longer disorder in order to _couple the same
investigated the physical origin of this discrepancy by en-2mount of energy through the systéar similarly, to tunnel
forcing in the numerical calculations some of the assumptlrough a wider barrigr Relaxing the definition of resonance
tions made in the RPA approach. First, uncorrelated disorddfoWering Tc; see Fig. Ta)], leads to asymmetrical
has been used in the numerical calculations, with similaf! (X)) eso distributions with maxima shifted from the center
results to those for the Gaussian correlation. Rapid phas@ the incoming end of the disorder segment.
averaging has also been carried out at each realization prior The contribution to the average intensity from typical re-
to ensemble averaging, yielding no significant differencesalizations ¢90%), (I(x))yp. plotted in Fig. %c), also de-
Thus neither finite correlation nor RPA can give rise to thepends universally orL/¢ and T, (not shown herg and
observed discrepancy. shows a qualitative behavior similar ¢b(x)), with a faster

At this point, it is important to emphasize that plotted in decay, as expected. Interestingly, neitfigx)) nor (I(x))yp
Fig. 6 is the ensemble average of the intensity, which is aecay exponentially, but rather manifest-bke dependence,
non-self-averagingstrongly fluctuatingquantity. To gain in-  as mentioned above. This means that, no matter how long the
sight into the behavior of the field intensity pattern at differ- realization idi.e., how small expfL/¢) is], a lengthening of
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L/E=5.5

Q_ -
=10
g oo
R a2 i)
=~ 10 o g/d:0.0S, /d=274
~ o §/d=0.08, E/d=110

A 3/d=0.1, E/d=70
——— exp{ln I{x))
—_—I(x)

\y
\
I NI IS AN AT S AN AR AT A A AT

FIG. 8. Spatial distributions of the contribution to the average
field intensity (log scale from typical realizations witte/d=0.2, | gl
6/d=0.05 (circles, 0.08 (squares and 0.1(triangles, and fixed ~10 O 8/d=0.05,&/d=274 =

disordered length./¢=5.5, for T,=10"*, 0.004, 0.1, 0.4, and 1 10-2 O 5/d=0.08, &d=110 -
(the latter equivalent tél (x)), thin solid curve. Also included are: sl A desLgase
expInl(x)) (dashed curveand I(x) (spatially averaged in a log 10_0_5 -0.25 0 0.25 0.5
scale for a single, typical realizatiofthick solid curve. ()C-L/Z)/L

the system(increase ofL with the localization length kept FIG. 9. Same as in Fig. 6 but for the fourt® and secondb)
fixed) leads, surprisingly enough, to essential changes in thﬁ'10ments of the field intensity, anid §=2,4.4,8.2. For the sake of

energy distribution inside. Namely, provided that the strengthy o ity the resuits fot./¢=8.2 in (a) have been spatially averaged
of the disorder is fixed, the longer a randomly disordered,er ~ 10d.

sample is, the slower is the decay of the intensgipth

(1(x)) and(1(x))typ] from the incoming end deep into the hyge field intensities. The extremely large fluctuations of
sample(this is neatly observed in Figs(d& and §c)]. In the field intensity induced by such resonances are respon-
other words, the “penetration depth” of bot) and(l)y,  sible for the enhancement of higher-order moments,
into a 1D random system is independent of the strength o I”(7))><|(7)>“; this phenomenon should be more notori-

scattermgl,d which ts?enF to b; st(')mlewhat tcct).untedrlntttﬁtlv us near mid-waveguide and for lardeé andn, as indeed
(one would expect, for fixed, identical penetration depths confirmed by our results in Fig. .

with longer tails for longer waveguidgsThis effect is, how-
ever, dependent on the valiigin the definition of(1),,,, as
illustrated in Fig. 8: with the cutoff decreasing, the slowly

decaying part ofl(x))y, near the incoming endxeL) To summarize, we have developed a formalism to calcu-
diminishes, the distribution thus decaying more abruptly,ate the field inside surface-disordered waveguides, similar to
This dependence ofi; is more intuitive, since it can be that of the invariant embedding equations for the reflection
expected that, for a smaller outgoing enefigy(normalized  anq transmission coefficients. By applying it to 2D single-
to the incoming energy the incident wave penetrates less mode waveguides with planar walls and Gaussian-correlated
into the disordered waveguide. _ ~ surface roughness, we have investigated the occurrence of
Interestingly, the intensity for a single typical realization resonances in the 1D Anderson localization regime, with em-
for which T~(T) appears to decay approximately exponen-phasis on the resulting field intensity distribution both for
tially 1~exp(=x/¢), as seen in Fig. &its oscillations are gjven realizations and ensemble averages.
smoothed spatially on a log scal@his is in accordance with e have examined the frequency dependence of the trans-
the behavior of the average logarithm of the intensity, whichmjssion coefficienT () for different realizations; it exhibits
fluctuates less strongly than the intensity itself and fits veryy \ell-defined resonance-type behavior inherent to the
accurately(In1(x))=—[x—L|/& (see Fig.  revealing its self- |ocalization regime. This enables us to separate typical real-
averaging nature. From these results, it is inferred that thgyations, characterized by very lovas expected from the
s-like shape of the average intengty [which departs quali-  average(In T)~—L/¢) values of T and a monotonically de-
tatively and quantitatively from the distribution ékpl(X))  caying intensity, from resonances with transmission coeffi-
=exp(—|x—L[/&)] is due to the contribution of scard®w-  cients close to one and extremely high intensity maxitoa
probable resonant realizations where the field is stronglycalization in a region around the center of the system.
localized, its amplitude being substantiallgven orders of Numerical simulation calculations for the mean field in-
magnitude larger than that of the incident wave. tensity (1(x)) along the disordered segment of the wave-
Finally, we have calculated higher-order moments of theyuide reveal a universal behavior completely determined by
mean intensit1"(x)). In Fig. 9, the numerical results are the ratioL/¢: A smooth decay from the initial value df)
shown in the casen=2,4 for some of the disordered ~1+(R(L)) at the incoming end, to the outgoing mean
waveguides considered above. The most remarkable featutensmitted field intensity|)~(T(L)), crossing the value
is the broad, resonantlike shape, revealing the incred&ng (1)~1 at or near the center of the disordered segment. For
higher n) influence of (low-probability) resonances, with moderately strong disordet/é=1, the quasianalytical

V. CONCLUDING REMARKS
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(RPA) prediction(28) fully agrees with the numerical calcu- too small,(I(x)),, (as well as(I(x))) inside a 1D random

lations. However, for strong disorderé>1, the numerical system is slightly dependent on the strength of the scattering,

results exhibit, unlike the RPA result, a shift of the midpointand increases with the increase of the total lengthof the

((IY~1) towards the incoming edge. system. With decreasing threshold vallig the penetration
The contribution to(I(x)) from resonant realizations depth ceases to depend brand(l(x)),, decays more rap-

(those vyielding anomalously large transmission above dadly. In this regard, evidence of the self-averaging nature of

threshold valu€er.) also manifests a universality character-In1(x)/x is given by the behavior of IHx) for single,

ized by the parameters/¢ and T,: Its shape is a broad typical realizations, and also by the result thdm I(x))

distribution whose maximum value, which is larger for stron-=—|x—L|/&

ger disorder, shifts from the center towards the incoming

edge with decreasing.. On the other hand, we have found

that the contribution from such low-probability resonances

become more dramatic in higher-order moments of the total This work was supported in part by the Spanish Diregcio

intensity distribution. General de Investigaaio (Grant Nos. BFM2000-0806
The contribution from typical realizations to the total av- and BFM2001-2265 and by the ONR Grant

erage(l(x))yp, depends on the cutoff vallk, . ForT, not ~ ONR#N000140010672.
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