18 research outputs found

    Microwave-Driven Exfoliation of Bulk 2H-MoS<sub>2</sub> after Acetonitrile Prewetting Produces Large-Area Ultrathin Flakes with Exceptionally High Yield

    Get PDF
    2D materials display exciting properties in numerous fields, but the development of applications is hindered by the low yields, high processing times, and impaired quality of current exfoliation methods. In this work we have used the excellent MW absorption properties of MoS2 to induce a fast heating that produces the near-instantaneous evaporation of an adsorbed, low boiling point solvent. The sudden evaporation creates an internal pressure that separates the MoS2 layers with high efficiency, and these are kept separated by the action of the dispersion solvent. Our fast method (90 s) gives high yields (47% at 0.2 mg/mL, 35% at 1 mg/mL) of highly exfoliated material (90% under 4 layers), large area (up to several μm2), and excellent quality (no significant MoO3 detected)

    Fabrication of devices featuring covalently linked MoS2–graphene heterostructures

    Get PDF
    The most widespread method for the synthesis of 2D–2D heterostructures is the direct growth of one material on top of the other. Alternatively, flakes of different materials can be manually stacked on top of each other. Both methods typically involve stacking 2D layers through van der Waals forces—such that these materials are often referred to as van der Waals heterostructures—and are stacked one crystal or one device at a time. Here we describe the covalent grafting of 2H-MoS2 flakes onto graphene monolayers embedded in field-effect transistors. A bifunctional molecule featuring a maleimide and a diazonium functional group was used, known to connect to sulfide- and carbon-based materials, respectively. MoS2 flakes were exfoliated, functionalized by reaction with the maleimide moieties and then anchored to graphene by the diazonium groups. This approach enabled the simultaneous functionalization of several devices. The electronic properties of the resulting heterostructure are shown to be dominated by the MoS2–graphene interface.The authors acknowledge European Research Council (ERC-PoC- 842606 (E.M.P.); ERC-AdG-742684 (J. S.) and the MSCA program MSCA-IF-2019-892667 (N.M.S.), MINECO (CTQ2017-86060-P (E.M.P.) and CTQ2016-79419-R), Ministerio de Ciencia e Innovación (RTI2018-096075-A-C22 (E.B.), RYC2019-028429-I (E.B.)) the Comunidad de Madrid (MAD2D-CM S2013/ MIT-3007 (E.M.P.), Y2018/NMT-4783 (A.D.)) and the Programa de Atracción del Talento Investigador 2017-T1/IND-5562 (E.B.)). CzechNanoLab Research Infrastructure supported by MEYS CR (LM2018110) are gratefully acknowledged. IMDEA Nanociencia acknowledges support from the Severo Ochoa Programme for Centres of Excellence in R&D (MINECO, grant no. SEV-2016-0686).Peer reviewe

    Phase-Resolved Detection of Ultrabroadband THz Pulses inside a Scanning Tunneling Microscope Junction

    Get PDF
    Coupling phase-stable single-cycle terahertz (THz) pulses to scanning tunneling microscope (STM) junctions enables spatiotemporal imaging with femtosecond temporal and Angstrom spatial resolution. The time resolution achieved in such THz-gated STM is ultimately limited by the subcyde temporal variation of the tip-enhanced THz field acting as an ultrafast voltage pulse, and hence by the ability to feed high-frequency, broadband THz pulses into the junction. Here, we report on the coupling of ultra-broadband (1-30 THz) single-cycle THz pulses from a spintronic THz emitter (STE) into a metallic STM junction. We demonstrate broadband phase-resolved detection of the THz voltage transient directly in the STM junction via THz-field-induced modulation of ultrafast photocurrents. Comparison to the unperturbed far-field THz waveform reveals the antenna response of the STM tip. Despite tip-induced low-pass filtering, frequencies up to 15 THz can be detected in the tip-enhanced near-field, resulting in THz transients with a half-cycle period of 115 fs. We further demonstrate simple polarity control of the THz bias via the STE magnetization and show that up to 2 V THz bias at 1 MHz repetition rate can be achieved in the current setup. Finally, we find a nearly constant THz voltage and waveform over a wide range of tip-sample distances, which by comparison to numerical simulations confirms the quasi-static nature of the THz pulses. Our results demonstrate the suitability of spintronic THz emitters for ultrafast THz-STM with unprecedented bandwidth of the THz bias and provide insight into the femtosecond response of defined nanoscale junctions

    Average power scaling of THz spintronic emitters efficiently cooled in reflection geometry

    Get PDF
    Metallic spintronic terahertz (THz) emitters have become well-established for offering ultra-broadband, gapless THz emission in a variety of excitation regimes, in combination with reliable fabrication and excellent scalability. However, so far, their potential for high-average-power excitation to reach strong THz fields at high repetition rates has not been thoroughly investigated. In this article, we explore the power scaling behavior of tri-layer spintronic emitters using an Yb-fiber excitation source, delivering an average power of 18.5 W (7 W incident on the emitter after chopping) at 400 kHz repetition rate, temporally compressed to a pulse duration of 27 fs. We confirm that a reflection geometry with back-side cooling is ideally suited for these emitters in the high-average-power excitation regime. In order to understand limiting mechanisms, we disentangle the effects on THz power generation by average power and pulse energy by varying the repetition rate of the laser. Our results show that the conversion efficiency is predominantly determined by the incident fluence in this high-average-power, high-repetition-rate excitation regime if the emitters are efficiently cooled. Using these findings, we optimize the conversion efficiency and reach highest excitation powers in the back-cooled reflection geometry. Our findings provide guidelines for scaling the power of THz radiation emitted by spintronic emitters to the milliwatt-level by using state-of-the-art femtosecond sources with multi-hundred-Watt average power to reach ultra-broadband, strong-field THz sources with high repetition rate

    Single-Walled Carbon Nanotubes Encapsulated within Metallacycles

    No full text
    Mechanically interlocked derivatives of carbon nanotubes (MINTs) are interesting nanotube products since they show high stability without altering the carbon nanotube structure. So far, MINTs have been synthesized using ring-closing metathesis, disulfide exchange reaction, H-bonding or direct threading with macrocycles. Here, we describe the encapsulation of single-walled carbon nanotubes within a palladium-based metallosquare. The formation of MINTs was confirmed by a variety of techniques, including high-resolution transmission electron microscopy. We find the making of these MINTs is remarkably sensitive to structural variations of the metallo-assemblies. When a metallosquare with a cavity of appropriate shape and size is used, the formation of the MINT proceeds successfully by both templated clipping and direct threading. Our studies also show indications on how supramolecular coordination complexes can help expand the potential applications of MINTs.Funding for open access charge: CRUE-Universitat Jaume IWe gratefully acknowledge financial support from the Ministry of Science of Spain (CTQ2017-86060-P and PID2020-116661RB-I00), Comunidad de Madrid (P2018/NMT-4367), IMDEA Nanociencia receives support from the “Severo Ochoa” Programme for Centres of Excellence in R&D (MINECO, Grant CEX2020-001039-S)
    corecore