126 research outputs found

    Democratic quality and excess mortality during the COVID‑19 pandemic

    Get PDF
    The aim of this study is to analyse the relationship between democratic quality and excess mortality produced in the year 2020 before COVID-19 vaccinations were generalised. Using cross-sectional data from 80 countries on five continents, multiple linear regression models between excess mortality, the general democracy index and its disaggregation into five categories: electoral process and pluralism, government functioning, political participation, political culture and civil liberties were estimated. The analysis also considered, public health spending per capita, overweight inhabitants, the average temperature of the country, population over 65 years of age, The KOF Globalisation Index, and the Gross National Income per capita as control variables. It was possible to establish a strong inverse association between excess mortality per million inhabitants and the general democracy index and four of its five categories. There was a particularly strong relationship between excess mortality and the political culture dimension (−326.50, p < 0.001). The results suggest that the higher the democratic quality of the political institutions of a State and particularly of their political culture the more improved the response and management of the pandemic was in preventing deaths and protecting their citizens more effectively. Conversely, countries with lower democracy index values have higher excess mortality. Quality democratic political institutions provide more effective public health policies in the face of the COVID-19 pandemic.Unit of Excellence in Inequality, Human Rights, and Sustainability of the University of Granada (DEHUSO

    OntoExhibit: una ontología para el modelado del ámbito de las exposiciones artísticas y sus expansiones semántico-discursivas.

    Get PDF
    El objetivo de esta comunicación es presentar OntoExhibit v. 1.0, una ontología diseñada para la representación, publicación y reutilización de información codificada y semánticamente enriquecida del dominio de las exposiciones artísticas. OntoExhibit es el resultado de una línea de investigación que se ha desplegado a través de cuatro proyectos de investigación consecutivos (2015-2022)Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Simulation of atmospheric microbursts using a numerical mesoscale model at high spatiotemporal resolution

    Get PDF
    Atmospheric microbursts are low‐level meteorological events that can produce significant damage on the surface and pose a major risk to aircraft flying close to the ground. Studies and ad hoc numerical models have been developed to understand the origin and dynamics of the microburst; nevertheless, there are few researches of the phenomenon using global and mesoscale models. This is mainly due to the limitations in resolution, as microbursts normally span for less than 4 km and 20 min. In this paper, the Weather esearch and Forecasting model is used at resolutions of 400 m and 3 min to test if it can properly capture the variables and dynamics of high‐reflectivity microbursts. Several microphysics and planetary boundary layer parametrizations are tested to find the best model configuration for the simulation of this kind of episodes. General conditions are evaluated by using thermodynamic diagrams. Surface and vertical wind speed, reflectivity, precipitation, and other variables for each simulated event are compared with observations, and the model's sensitivity to the variables is assessed. The dynamics and evolution of the microburst is evaluated using different plots of a chosen event. The results show that the model is able to reproduce high‐reflectivity microbursts in accordance with observations, although there is a tendency to underestimate the intensity of variables, most markedly on the wind vertical velocity. Regarding the microphysics schemes, the Morrison parametrization performs better than the WRF single‐moment 6‐class scheme. No major differences are found between the Mellor‐Yamada‐Janjic and the Mellor‐Yamada‐Nakanishi‐Niino planetary boundary layer parametrizations.This work is supported by the Interdisciplinary Mathematics Institute of the Complutense University of Madrid and the following research projects: METEORISK (RTC‐2014‐1872‐5), PCIN‐2014‐013‐C07‐04, PCIN‐2016‐080 (UE ERANET Plus NEWA Project), ESP2013‐47816‐C4‐4‐P, CGL2010‐15930, CGL2016‐81828‐REDT, FEI‐EU‐17‐16, and SAFEFLIGHT GL2016‐78702‐C2‐1‐R and CGL2016‐78702‐C2‐2‐R). This research is founded by the Spanish Ministry of Economy and Enterprise under the framework of the SAFEFLIGHT research project (CGL2016‐78702‐C2‐1‐R and CGL2016‐78702‐C2‐2‐R)

    Aircraft icing: in‐cloud measurements and sensitivity to physical parameterizations

    Get PDF
    The prediction of supercooled cloud drops in the atmosphere is a basic tool for aviation safety, owing to their contact with and instant freezing on sensitive locations of the aircraft. One of the main disadvantages for predicting atmospheric icing conditions is the acquisition of observational data. In this study, we used in‐cloud microphysics measurements taken during 10 flights of a C‐212 research aircraft under winter conditions, during which we encountered 37 regions containing supercooled liquid water. To investigate the capability of the Weather Research and Forecasting model to detect regions containing supercooled cloud drops, we propose a multiphysics ensemble approach. We used four microphysics and two planetary boundary layer schemes. The Morrison parameterization yielded superior results, whereas the planetary boundary layer schemes were essential in evaluating the presence of liquid water content. The Goddard microphysics scheme best detected the presence of ice water content but tended to underestimate liquid water content.This research was carried out in the framework of the SAFEFLIGHT project, financed by MINECO (CGL2016‐78702) and LE240P18 project (Junta de Castilla y León)

    Characterization of spread in a mesoscale ensemble prediction system: multiphysics versus initial conditions

    Get PDF
    In this research, uncertainty associated with initial and boundary conditions is evaluated for short-term wind speed prediction in complex terrain. The study area is the Alaiz mountain range, a windy region in the northern Iberian Peninsula. A multiphysics and multiple initial and boundary condition ensemble prediction system (EPS) was generated using the Weather Research and Forecasting model. Uncertainty of the EPS is analyzed using an index based on the spread between ensemble members, considering its behavior under different wind speed and direction events, and also during distinct atmospheric stability conditions. The results corroborate that physical parameterization uncertainty is greater for short-term forecasts (63.5%). However, it is also necessary to consider the uncertainty associated with initial conditions, not only for its quantitative importance (36.5%) but also for its behavior during thermal inversion conditions in the narrow valleys surrounded by mountains

    Mountain waves analysis in the vicinity of the Madrid-Barajas Airport using the WRF model

    Get PDF
    Turbulence and aircraft icing associated with mountain waves are weather phenomena potentially affecting aviation safety. In this paper, these weather phenomena are analysed in the vicinity of the Adolfo Su´arez Madrid-Barajas Airport (Spain). Mountain waves are formed in this area due to the proximity of the Guadarrama mountain range. Twenty different weather research and forecasting (WRF) model configurations are evaluated in an initial analysis. .is shows the incompetence of some experiments to capture the phenomenon. .e two experiments showing the best results are used to simulate thirteen episodes with observed mountain waves. Simulated pseudosatellite images are validated using satellite observations, and an analysis is performed through several skill scores applied to brightness temperature. Few differences are found among the different skill scores. Nevertheless, the .ompson microphysics scheme combined with the Yonsei university PBL scheme shows the best results. .e simulations produced by this scheme are used to evaluate the characteristic variables of the mountain wave episodes at windward and leeward and over the mountain. .e results show that north-northwest wind directions, moderate wind velocities, and neutral or slightly stable conditions are the main features for the episodes evaluated. In addition, a case study is analysed to evidence the WRF ability to properly detect turbulence and icing associated with mountain waves, even when there is no visual evidence available..is work was partially supported by the following research projects: PID2019-105306RB-I00, PCIN-2014-013-C07-04, and PCIN2016-080 (UE ERA-NET Plus NEWA Project), CGL2016-78702-C2-1-R and CGL2016-78702-C2-2-R (SAFEFLIGHT Project), FEI-EU-17-16 and SPESMARTand SPESVALE (ECMWF Special Projects)

    Engelamiento en vuelo: caso de estudio sobre la sierra de Guadarrama

    Get PDF
    Ponencia presentada en: XXXV Jornadas Científicas de la AME y el XIX Encuentro Hispano Luso de Meteorología celebrado en León, del 5 al 7 de marzo de 2018.Un pronóstico meteorológico preciso es indispensable para la aviación, ya que del mismo depende tanto la gestión del vuelo como de los riesgos a los que está expuesta. Las condiciones meteorológicas adversas son la causa de múltiples incidentes y accidentes de aviación, constituyendo la presencia del engelamiento una de las situaciones más peligrosas para la seguridad en vuelo (Caliskan & Hajiyev, 2013). Sin embargo, los modelos numéricos suelen sobreestimar la presencia de agua en fase sólida y subestimar la presencia de agua subfundida, de tal manera que no se pronostica con precisión la concentración de SLD (Fernández-González, et al. 2014). Esto genera que el pronóstico de las condiciones de engelamiento en meteorología aeronáutica sea manifiestamente mejorable. A través de un caso de estudio, este trabajo evalúa, la idoneidad de la información meteorológica aeronáutica previa a un vuelo y analiza si es adecuada para anticipar casos de engelamiento. Se analizan las condiciones atmosféricas a escala sinóptica y posteriormente, se modelizan las condiciones a mesoescala para estudiar la predictibilidad del episodio. Finalmente se investigan posibles herramientas de nowcasting usando teledetección
    corecore