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Abstract Atmospheric microbursts are low‐level meteorological events that can produce significant
damage on the surface and pose a major risk to aircraft flying close to the ground. Studies and ad hoc
numerical models have been developed to understand the origin and dynamics of the microburst;
nevertheless, there are few researches of the phenomenon using global andmesoscale models. This is mainly
due to the limitations in resolution, as microbursts normally span for less than 4 km and 20 min. In this
paper, the Weather Research and Forecasting model is used at resolutions of 400 m and 3 min to test if it can
properly capture the variables and dynamics of high‐reflectivity microbursts. Several microphysics and
planetary boundary layer parametrizations are tested to find the best model configuration for the simulation
of this kind of episodes. General conditions are evaluated by using thermodynamic diagrams. Surface
and vertical wind speed, reflectivity, precipitation, and other variables for each simulated event are
compared with observations, and the model's sensitivity to the variables is assessed. The dynamics and
evolution of the microburst is evaluated using different plots of a chosen event. The results show that the
model is able to reproduce high‐reflectivity microbursts in accordance with observations, although there
is a tendency to underestimate the intensity of variables, most markedly on the wind vertical velocity.
Regarding the microphysics schemes, the Morrison parametrization performs better than the WRF
single‐moment 6‐class scheme. No major differences are found between the Mellor‐Yamada‐Janjic and the
Mellor‐Yamada‐Nakanishi‐Niino planetary boundary layer parametrizations.

1. State of the Art

Atmospheric downbursts are first noted in the scientific literature by Fujita (1976) and Fujita and Byers
(1977), who describe it as an extremely intense downdraft, a negative vertical component of the wind vector
(w), near the ground that can generate extensive damage on the surface and pose a risk to aircraft at low
altitudes. The authors differentiate the phenomenon from the more common downdrafts generated by
heavy precipitating convective cells, noted by Byers and Braham (1949). Then, Fujita and Byers (1977),
Fujita (1981b), and Fujita and Wakimoto (1981) define a downburst as an atmospheric event where a strong
downdraft in the lower heights of the atmosphere produces an area of damaging surface wind with a
divergent pattern, ranging from less than one to tens of kilometers. These surface winds generate a toroidal
shaped gust front (Fujita, 1981b; Fujita & Wakimoto, 1983), named outburst at first and outflow in the later
literature. Fujita also creates a subdivision of downbursts based on the planetary horizontal scale of the
outflow (Fujita, 1981b) and the duration of the peak winds (Fujita, 1980). Thus, a macroburst is defined
by an outflow diameter larger than 4 km with peak winds lasting more than 5 min, while a microburst
presents an outflow diameter smaller than 4 km and peak winds lasting less than 5 min. Downbursts can
also be subdivided considering the amount of precipitation generated and the radar reflectivity of the con-
vective cell (Fujita, 1985; Fujita & Wakimoto, 1981; Wilson et al., 1984). Low reflectivity or dry downbursts
generate precipitation below 0.25 mm and radar reflectivity below 35 dBZ, while high reflectivity or wet
downbursts present precipitation over 0.25 mm and radar reflectivity over 35 dBZ.

Microbursts are defined as a major meteorological hazard for aviation and flight safety (Fujita, 1980, 1981a,
1985; Wolfson et al., 1994). The phenomenon draws the attention of the aviation community and the
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meteorological science in the decade of 1980, as it is related to several aircraft accidents and incidents. Thus,
four major field programs are conducted to characterize the event, in which more than 300 microbursts are
studied: the Northern Illinois Meteorological Research On Downbursts project (Fujita, 1985), the Joint
Airport Weather Studies project (McCarthy et al., 1982; Wilson et al., 1984), the Federal Aviation
Administration—Lincoln Laboratory Operational Weather Studies project (Wolfson et al., 1985), and the
Microburst and Severe Thunderstorm (MIST) project (Atkins & Wakimoto, 1991; Dodge et al., 1986).
These projects providemost of the information and technical knowledge of themicrobursts, and their results
have been verified by research in different countries as Japan (Ohno et al., 1996) and Australia (Potts, 1991).
Along with the field programs, notable laboratory studies on the buoyancy and vertical acceleration of the
air and ad hoc numerical models of the microbursts are developed by Srivastava (1985, 1987) and Proctor
(1988, 1989).

Since the nineties the research in microbursts moves towards more practical approaches. McCann (1994)
develops theWind Index, and Pryor and Ellrod (2004) develop the Wet Microburst Severity Index, both fore-
casting algorithms to be used by operational meteorologists. Atlas et al. (2004) use Doppler radar observa-
tions to conclude the concurrence with Srivastava's models and that a narrow distribution of hail meteor
sizes produces stronger high‐reflectivity microbursts. Ferrero et al. (2014) perform laboratory simulations
of microbursts to conclude that the fluid column height and density do not produce remarkable differences
to the microburst, although high flow rotation can prevent the event, in contrast to former results. Pryor
(2015) produces the Microburst Windspeed Potential Index as a nowcasting algorithm. Burlando et al.
(2017) conduce a field study to confirm a high‐reflectivity downburst event over Italy and the associated
synoptic conditions.

With the development of high‐performance computers, numerical models can reach high resolutions, and
simulations are used in the research of the microburst. Lin et al. (2007) and Vermeire et al. (2011a) use sub-
cloud idealized simulations to reproduce different microbursts' features generating results concurrent with
observations. James and Markowski (2010) perform idealized three‐dimensional simulations to find that,
contrary to previous findings, dry air aloft is detrimental for downbursts as it reduces the hydrometeors'
mass. Vermeire et al. (2011b) use large eddy simulations to model outflows with the conclusion that a cool-
ing source model is better than and impinging jet model in capturing the features of the event. Nevertheless,
Orf et al. (2012) perform a three‐dimensional cloud simulation to prove that neither the impinging jet nor the
cooling source models are sufficient to capture the complete process of downbursts, presenting results con-
current with observations. Oreskovic et al. (2018) also use cloud simulations to evaluate the thermodynamic
cooling associated with downbursts. In the field of numerical weather prediction models, few publications
are found on the microburst issue. A report by van Dijke et al. (2011) presents a high‐resolution Weather
Research and Forecasting (WRF) hindcast of a microburst event associated to a bow‐echo structure,
evaluating the winds and reflectivity of the event. A research by Carroll et al. (2011) shows a hit‐or‐miss test
of four microphysics parametrizations, based on seven case studies, to conclude that the WRF single‐
moment 6‐class scheme (WRF6) is the best performer. To the authors' knowledge, no research has been done
to perform a detailed analysis of the variables and structure of the microburst using a mesoscale numerical
model. Precisely, the objectives of this paper are to verify if the WRF model is able to reproduce high‐
reflectivity microbursts and evaluate the simulation of the main variables related. In addition, an assessment
of two microphysics and two planetary boundary layer (PBL) parametrizations is performed. The paper is
structured as follows: Section 2 presents a technical analysis of the microburst and the observational data
used, both necessary to understand the assessment of the simulations, which are described in section 3
along with the evaluation process. Section 4 presents the results of the simulations and discussion of the
evaluation, which lead to the conclusions in section 5.

2. The Microburst

Fujita (1985) and Wakimoto (1985) establish a series of conditions on the surface wind intensities to be
considered a microburst, being the principal a minimum of 10 m s−1 at maximum wind speed (this would
generate a radial difference in wind speed of ΔV ≥ 20 m s−1). In addition, Wilson et al. (1984) and
Hjelmfelt (1988) create the following characterization:

• Average maximum radial velocity differential: 24 m s−1. Median: 22 m s−1.
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• Average distance of maximum radial velocity differential: 3,100 m.
• Average depth of outflow: 700 m.
• Characteristic lifespan:
• t = −5 min: downburst can be detected at 3.0 km above ground level (AGL) (−5 ≥ w ≥ −10 m s−1).
• t = −2 min: downburst can be detected at 1.5 km AGL.
• t = 0 min: downburst reaches the surface; divergence appears in the surface wind field.
• t = +2.5 min: outflow reaches microburst wind speed (ΔV ≥ 20 m s−1, w ≤ −10 m s−1).
• t = +7 min: outflow reaches maximum wind speed.
• t = +15 min: outflow decays under microburst intensity.

Figure 1 illustrates the characteristic downburst and outflow. Being the wind gust events most common dur-
ing the summer (Kelly et al., 1985), a diurnal variation is also observed for the microburst, with 91% of occur-
rences between 10:00 and 21:00 local time (LT) and a peak observed between 14:00 and 16:00 LT (34% of
events). Figure 2 presents the temporal frequency observed in the 297 microbursts registered in Northern
Illinois Meteorological Research On Downbursts, Joint Airport Weather Studies (Fujita, 1985), and MIST
(Atkins & Wakimoto, 1991).

Laboratory studies and numerical models of the microbursts developed by Srivastava (1985, 1987) and
Proctor (1988, 1989) show that the microphysical and thermodynamic details are very important in the for-
mation of a downdraft, which is governed by the inviscid vertical momentum equation (Wakimoto, 2001):

dw
dt

¼ −
1
ρ
∂p′
∂z

þ g
θ′v
θv0

−
cv
cp

p′

p0
− rc þ rr þ rið Þ

" #
;

Eq. (1)where w is vertical velocity, t is time, ρ is air density, p is pressure, z is height, g is gravity, ϴv is the
virtual potential temperature, cp is specific heat at constant pressure, cv is specific heat at constant volume,
rc is the mixing ratio of cloud water, rr is the mixing ratio of rain water, and ri is the mixing ratio of ice water.
Primes denote differences with height. This makes four terms in the equation: perturbation pressure vertical
gradient, thermal buoyancy, perturbation pressure buoyancy, and condensate loading. The vertical gradient
of perturbation pressure is generally small and may be only considered in large mesoscale convective sys-
tems and not for microbursts. The effects of pressure buoyancy are even smaller (Wakimoto, 2001) and
should also be disregarded for the present study.

Figure 1. Vertical cross section of the characteristic microburst structure at maximum intensity. Based on a figure from
Hjelmfelt (1988). © American Meteorological Society. Used with permission.
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Downbursts usually initiate at midlevel layers, close above the 0 °C level (Proctor, 1989). Thermal buoyancy
is the main factor in the downdraft due to the latent cooling generated by phase changes, although down-
drafts tend to be notably subsaturated (Proctor, 1989; Srivastava, 1985) and not necessarily present a large
negative buoyancy (Wakimoto, 2001). Compared with evaporation, melting and sublimation enhance down-
draft speeds due to additional cooling (Proctor, 1988; Srivastava, 1987; Wakimoto et al., 1994); thus, snow
conduces to strong low‐reflectivity microbursts, and hail generates stronger high‐reflectivity microbursts.
Smaller drops have a large evaporative potential due to greater curvature, which leads to a larger equilibrium
vapor pressure and lower relative humidity (Proctor, 1989; Srivastava, 1985, 1987). Also dependent on atmo-
spheric meteors, condensate loading can initiate the downdraft or maintain it once initiated, in function of
drop size, intensity, and downdraft speed (Byers & Braham, 1949; Knupp, 1988; Roberts & Wilson, 1989).
Entrainment of environmental dry air at midlevel layers can initiate downdrafts by promoting evaporation.
However, this effect may be detrimental at lower levels, where high relative humidity increases virtual
ambient temperature, developing stronger downdrafts (Wakimoto, 2001).

Srivastava (1985) considers all these factors to produce a relationship between downburst speeds, tempera-
ture lapse rate, and liquid water mixing ratio (Figure 3), both measured at the 0 °C level. This relationship
shows that thermal buoyancy (second term in equation 1) is dominant for low‐reflectivity microbursts,
but condensate loading (fourth term in equation 1) can override it in the initiation of high‐reflectivity
microbursts. The temperature lapse rate between 700 and 500 hPa is correlated with the occurrence of
low‐reflectivity microbursts, particularly when this lapse rate is observed to be smaller or equal to −8 °C
km−1 in the afternoon (Caplan et al., 1990). In the case of high‐reflectivity microbursts, the equivalent
potential temperature (ϴe) deficit, defined as the difference between the maximum ϴe near the ground
and the minimumϴe at midlevels, is more accurate. Afternoon environments conductive to high‐reflectivity
microbursts consistently exhibitϴe deficits equal or larger than 20 °C (Atkins &Wakimoto, 1991). The char-
acteristic vertical thermodynamic diagrams for high‐reflectivity microbursts are defined for temperature,
dew point temperature, and ϴe, as depicted in Figure 4.

Microburst models show that the downdraft accelerates in the lower levels of the atmosphere, reaching the
maximum speed between 1,000 and 500 mAGL, thus the subcloud temperature lapse rate has to be less than
−7.5 °C km−1 for the evaporative cooling to support the downdraft (Proctor, 1988, 1989; Srivastava, 1985,
1987). It is also remarkable that, despite being one of the elemental components of microbursts, there is

Figure 2. Temporal distribution of observed microbursts. Summation of data from NIMROD, JAWS, and MIST. JAWS =
Joint Airport Weather Studies; MIST = Microburst and Severe Thunderstorm; NIMROD = Northern Illinois
Meteorological Research On Downbursts.
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Figure 3. Results of a one‐dimensional nonhydrostatic model of a downdraft. Plotted numbers show the vertical air
velocity (m s−1) at 3,700 m below the top of the downdraft as a function of environmental temperature lapse rate and
liquid water mixing ratio at the top of the downdraft. Scales on top indicate radar reflectivity and precipitation rate at the
top of the downdraft. Colored areas indicate microburst intensities as defined by Srivastava, colors differentiate between
dry and high‐reflectivity microbursts. Based on a figure from Srivastava (1985). © American Meteorological Society.
Used with permission.

Figure 4. Characteristic thermodynamic diagrams for humid environments conductive to high‐reflectivity microbursts.
Upper plots depict temperature (red) and dew point temperature (blue). Lower plots depict equivalent potential tem-
perature. Based on a figure fromAtkins andWakimoto (1991). © AmericanMeteorological Society. Used with permission.
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not a general agreement for the minimum w speed to the definition of the microburst. Fujita (1976) initially
noted a minimum w for the downburst as−3.6 m s−1 at 90 m AGL. Hjelmfelt (1988) characterizes the micro-
burstw speed as−12m s−1 at 1,500mAGL; laterWakimoto (2001) defines it as−20 m s−1, but this is done in
base of the arbitrary selection made by Srivastava (1985).

Finally, it has to be considered that microbursts typically develop in environments with weak wind shear
(Johns & Doswell, 1992). The convective cells producing microbursts usually present vorticities comparable
to the mesocyclones associated to tornadoes (Kessinger et al., 1988), although they show radial convergence
aloft. In addition, some results support the concept of microbursts primarily occurring on new convective
processes within existing outflow boundaries (Rydell & Ladd, 1991) or interacting with front leading edges
(Wolfson, 1990).

2.1. Data: The MIST Project

The observational data used in this paper is gathered in one of the mayor projects performed in the study of
microbursts. The MIST project (Atkins & Wakimoto, 1991; Dodge et al., 1986) is conducted in northern
Alabama (United States of America) for 61 days during June and July 1986. The project uses an array of
41 surface stations operated by the National Center for Atmospheric Research (NCAR) and 30 stations
operated by the Federal Aviation Administration—Lincoln Laboratory Operational Weather Studies. This
mesoscalar network covers an area of approximately 40 × 30 km and is complemented with the data from
three Doppler radar stations and the radiosonde data from the nearby Marshall Space Flight Center,
operated by the National Aeronautics and Space Administration (commonly referred to as Redstone). A total
of 62 microbursts were recorded in the project, 33 of them identified by the surface stations network, and 29
identified by the Doppler radar stations beyond the network's area (Atkins & Wakimoto, 1991).

The observations and results gathered during the MIST project become one of the original and main sources
for high‐reflectivity microburst characterization. Some of those observations are presented here to be used in
the validation of the experiment. Particularly three dates have been selected as case studies (Atkins &
Wakimoto, 1991), named with the number of microbursts observed:

• 13 July (MB25): This is the most active day in the project with 25 microbursts detected (40.3% of the total
recorded by MIST). On this date the following data are observed, which will be used in the evaluation of
the results of this paper:

• Synoptic conditions are relatively stagnant, with a dry air inflow from the west into midlevels.
• The cumulonimbus producing microbursts have tops reaching the tropopause.
• Main precipitation cores are mainly composed of ice. They present reflectivities over 55 dBZ and extend

between the level of minimum ϴe and 7 to 10 km AGL.
• During the descent of the precipitation core of themicrobursts, environmental air is dragged into the core,

at approximately the level of minimumϴe. This enhances negative buoyancy and accelerates the negative
w.

• Average maximum surface wind speed for microbursts: 15.1 m s−1.
• Average surface temperature difference for microbursts: −4.2 °C.
• 13microburst produce surface wind speeds over 15 m s−1, five events reach over 20m s−1, only onemicro-

burst reaches over 25 m s−1.
• 20 July (MB1): On this day a single microburst is observed, which is thoroughly documented and

described (Kingsmill & Wakimoto, 1991; Wakimoto & Bringi, 1988).
• 10 June (MB0): This day is recorded as a thunderstorm day with no microbursts detection.

3. Experimental Design

The experiment consists in the numerical modelization of the three aforementioned days selected from the
MIST project and the validation of these against the observational data. The simulations are performed with
the Advanced Research WRF model version 3.7.1. This is a nonhydrostatic model that has been extensively
proven and validated for weather prediction and research (Skamarock et al., 2008; Skamarock & Klemp,
2008). It is possible to fine‐tune the model to local conditions using the multiple variables and parametriza-
tions available. In this study, two different PBL and two microphysics schemes are used, thus four simula-
tions are presented for each date selected, making a total of 12 simulations.
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3.1. Model Configuration and Parametrization

Initial and boundary conditions are taken from the Climate Forecast System Reanalysis developed by the
National Center for Environmental Prediction. The reanalysis data is taken at 6‐hr intervals with a surface
spatial resolution of 0.312°, atmospheric spatial resolution of 0.5° and 37 vertical levels (Saha et al., 2010).

Four domains are allocated for the simulations, named D1, D2, D3, and D4 from outmost to innermost, with
a two‐way nesting strategy (Figure 5a). One of the challenges of this study is to work with spatial and tem-
poral resolutions adapted to microburst events, so it can be determined if theWRF simulates it properly. The
innermost domain (D4) is then configured as a 202 × 202 grid point domain with 400 m spatial grid resolu-
tion and 3 min of temporal resolution. D3 is 151 × 151 grid point with 1,200 m spatial resolution and 30 min
temporal resolution. Outer domains are both 121 × 121 grid point with resolutions of 3,600 m, 60 min for D2
and 10,800 m, 180 min for D1. For vertical resolution, 60 sigma levels are defined from surface to 50 hPa,
with a progressive resolution being greater in the lower levels of the troposphere, and four soil layers
are used.

As high‐reflectivity microbursts are related to heavy precipitation events (Fujita, 1985; Srivastava, 1985),
parametrizations are chosen according to previous work by the authors to validate the model in similar con-
ditions (Bolgiani et al., 2018). Long and short wave radiation scheme are new Goddard (Chou et al., 2001;
Chou & Suarez, 1999) (called every 10 min), soil layers scheme (technically, land surface scheme) is unified
Noah (Tewari et al., 2004), surface‐atmosphere interface scheme (technically, surface layer scheme) is Eta
similarity (Janjic, 1994), urban physics are not applied. Cumulus clouds are computed for D3 and D4, while
the Grell‐Freitas ensemble scheme (Grell & Freitas, 2014) is used for D1 and D2 (called every time step). The
model is operated as nonhydrostatic in the four domains, with now damping. For microphysics two schemes
are used, being the moments computed the main difference between them. The Morrison scheme computes
two moments (mixing ratio and number concentration of hydrometeors are independently predicted) and is
proven to be a good performer in storm and trailing related precipitation (Morrison et al., 2009). The WRF6
scheme is a single‐moment scheme (only mixing ratio is predicted) proven suitable for heavy precipitation
forecasting (Hong & Lim, 2006). Both consider the same six different hydrometeors types: water vapor, cloud
water, rainwater, cloud ice, snow, and graupel. For the PBL two schemes are used (called every time step),
both based on the Mellor‐Yamada scheme. The Mellor‐Yamada‐Janjic (MYJ) scheme is proven suitable for
forecasting the development and movement of severe storm (Janjic, 1994). The Mellor‐Yamada‐Nakanishi‐
Niino (MYNN) scheme is an improvement on buoyancy, stability, and turbulence kinetic energy

Figure 5. Area of study. (a) Positioning of the four nested domains used for the simulations (outer boundaries correspond to D1). (b) Terrain elevation map for D4.
Black circles show the position of the MIST Doppler radar stations (CP2, CP3, and CP4) and the Redstone radiosonde site.
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formulations (Nakanishi & Niino, 2006). Thus, each date simulated is performed with the following config-
urations: Morrison‐MYJ, WRF6‐MYJ, Morrison‐MYNN, and WRF6‐MYNN. It has to be noted that initially
other parametrizations were also tested, although they were discarded from the final experiment due to the
poor performance shown in the preliminary results.

3.2. Area and Time of Study

The position of D4 corresponds to the geographical domain selected for this study, which is an 80 × 80‐km
square area, comprising the MIST Project surface network area and a buffer zone for radar detection beyond
(Atkins & Wakimoto, 1991). This is centered near 086°50′W and 34°44′N, located west of the city of
Huntsville, east of the city of Athens, and north of the Tennessee River (Figure 5b). The area is mostly a flat
valley on a low plateau with elevations ranging from 150 to 300 m above mean sea level. Hills develop to the
north and larger elevations to the east, reaching more than 400 m above mean sea level, where the outskirts
of the Appalachian Mountains can be found. The climatology corresponds to a humid subtropical climate
with hot and humid summers. For June and July the Huntsville International Airport (inside D4) reports
the following daily averages: mean temperature 26.7 °C, maximum 32.4 °C, minimum 21.1 °C, wind speed
2.5 m s−1, relative humidity 75%, and precipitation 1.9 mm (NWS, 2019). Thunderstorms are reported an
average of 12.5 days per month.

The three case studies selected (see section 2.1) are simulated with a cold start from 01:00 to 01:00 LT the
next day. This allows the model to spin up and reach the simulation daytime in stable conditions. It has
to be noted that, regarding the diurnal variation of themicroburst, local times are predominantly used in this
paper, as they are more useful than Universal Time Coordinated (UTC). For the date and place of this study,
LT = UTC–5 h.

3.3. Assessment Process and Methods

The evaluation of the simulations is done by steps, first evaluating the atmospheric general conditions, then
the characteristic variables and finally the dynamics of the simulation. Data are processed and plotted
using the NCAR Command Language software, version 6.6.2 (NCAR, 2019).

The environmental conditions are assessed by comparing the sounding data at 07:00 and 13:00 LT.
Temperature, dew point, ϴe, and ϴe deficit are evaluated. In addition, the convective condensation level
is determined as it is used as a reference height to evaluate microburst variables. After that, a count of micro-
bursts generated by each simulation is performed using the surface wind field. It has to be noted that initially
the surface wind divergence was evaluated to establish an objective threshold to define amicroburst, but this
was not possible due to the diversity of wind flows that can generate the same divergence values. Thus it was
decided to perform this task by scanning the surface wind plot, searching for outflow patterns in each time
step. Two conditions are required to be considered a microburst: First, a clear divergent wind pattern.
Second, wind intensities equal or larger than 10 m s−1, covering at least a 180° arc of the divergent flow
(ΔV ≥ 20 m s−1) (see example on Figure 9). Attending to the observations and times recorded for each date,
the time window evaluated for this count ranges from 10:00 to 22:00 LT for MB0 and MB25, and from 11:00
to 18:00 LT for MB1. The results are evaluated against the number of microbursts observed each day. For
comparison with further results, also the time steps which the microbursts span are taken into account; as
the average lifetime of the microbursts is larger than the simulation's time step, a single event can be seen
in several time steps of the simulation; also, several events can be found in the same time step.

To evaluate the characteristic variables of the microburst, an Eulerian approach is used, as this would be the
kind of data recorded by a surface detection station. The grid location for the center of divergence of each
simulated microburst is stablished, and over that point a data timeline is recorded for each characteristic
variable: surface wind speed and direction (10 m AGL), minimum w between surface and 2,000 m AGL
(based on results for the convective condensation level), maximum reflectivity between surface and 2,000
m AGL, temperature lapse rate between surface and 2,000 m AGL, precipitation, and surface temperature
(2 m AGL). Every variable timeline is adjusted to the time step where maximum surface wind speed is
achieved and a span of ±30 min is taken. Timelines are plotted, averages and standard deviations are com-
puted for every simulation. These data are used to evaluate the performance of each model parametrization.
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In addition, probable wind gusts are calculated to assist in the wind speed evaluation. This is done by using a
Weibull cumulative distribution function.

CDF Xð Þ ¼ 1−e−
X−X0

βð Þ∝

Eq. (2)

The parameters used for the equation are proved in the estimation of wind gusts by the Air Force Weather
Agency (Creighton et al., 2014), being α= 3.0, β=X0

0.75, and X0 the maximum sustained surface wind speed
during the time step considered (a variable computed by the model). The required probability is 0.95.

After this, the sensitivity of the model to the variables is evaluated with an automatic detection script. The
script is designed to perform a test on the variables selected and yield a warning on each time step the con-
ditions established are met in any grid point of the domain. In case several variables are requested, the script
only yields a warning if every condition is met over some grid point. If every condition is met on the domain
but on scattered grid points and no single grid point reunites all the variables, there is no warning. Based on
results of the previous evaluation of w, three threshold speed are selected to test minimum w individually:
−3,−6, and−9 m s−1. Every other variable is individually tested at the defined characteristic or mean value.
Then, variables are combined, using w, reflectivity, and temperature lapse rate to test the downburst and
wind speed, surface temperature anomaly, and precipitation to test the outflow.

Finally, a single simulated microburst is used to evaluate the performance of the model on the structure and
dynamic of the event against an observed microburst. The observation of MB1 is chosen for this assessment
precisely because only one microburst was recorded, and it is properly documented (Kingsmill &Wakimoto,
1991; Wakimoto & Bringi, 1988). Thus, if we did not account for natural variability and other factors, a
“perfect” simulation would reproduce a single microburst with similar characteristics. The simulation to
evaluate is selected from the best performing parametrizations. The life cycle of the high‐reflectivity micro-
burst is systematically plotted with horizontal and cross‐section figures showing the evolution of several
variables. In this case, a Lagrangian approach is taken following the divergent center as it moves. Three
different plots are produced for each time step. A north‐south vertical cross section over the divergence
center is used to depict the wind flow, w speeds, reflectivity, water, and ice content. A horizontal plot shows
the surface wind vectors and speed. Another horizontal plot depicts the wind vectors and contours the fields,
where the characteristic variables are met.

4. Results and Discussion

It has to be noted that the results presented in this section do not follow the same order in which they were
achieved as described in section 3.3. First, the thermodynamic diagrams are shown, followed by the dynamic
evaluation, and then by the characteristic variables and the variables sensitivity. Following this order allows
a better understanding of the variables evaluation, as the reader will have a previous example to visualize.

4.1. Thermodynamic Diagrams

Figure 6 shows the simulated skew‐T log‐P diagrams at 07:00 and 13:00 LT for the four parametrizations on
every date. The soundings are simulated over Redstone, as it is performed during the MIST Project. The
results for each day are very similar for every simulation at 07:00 LT. The differences that can be noted at
13:00 LT are mainly due to the microphysics parametrization, as the PBL parametrizations only create
remarkable differences for the dew point temperature above 700 hPa. In addition, every simulation creates
a midlevel temperature inversion, also present at 07:00 LT for MB1 and MB0, not recorded in the observed
thermodynamic diagrams for any date (Atkins & Wakimoto, 1991); they also produce a lower relative
humidity than recorded near the 0 °C level. This makes the diagrams to perform worse above 700 hPa. It
is noteworthy that this inversion is reducing the convective available potential energy, which should hinder
the generation of microbursts, while at the same time the dry layer is fostering the evaporation, which
should enhance latent cooling.

Considering only the lower troposphere, the results for MB25 and MB1 show profiles similar to the charac-
teristic inverted V described as conductive to high‐reflectivity microbursts (Figure 4), properly reproducing
the low‐level temperature inversion in the morning diagram and the subcloud dry‐adiabatic layer in the
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afternoon. The morning inversions are due to radiation and disappear as surface heating promotes
convection. The large differences between the morning and afternoon diagrams for MB1 seem to respond
to a deep convective situation, that forces the dry midlevel capping to higher levels. The simulations for
MB0 also reproduce correctly the thermodynamic diagram in the lower troposphere with very small
differences among them; particularly, the Morrison microphysics produces for 07:00 LT a small inversion
below 970 hPa similar to the data presented by Atkins and Wakimoto (1991), although at 13:00 LT WRF6
is closer to observations in temperature values near the ground, producing a more accurate temperature
lapse rate. The convective condensation level is computed for every date at 13:00 LT, being the highest
result approximately 800 hPa. This correlates with a height of 2,000 m, which is used to evaluate w,
reflectivity, and temperature lapse rate. It has also to be noted that the dry level at 13:00 LT is between
600 and 500 hPa.

Figure 7 shows theϴe diagram for the four different simulations at 07:00 and 13:00 LT on every date. Theϴe

diagrams present patterns similar to those described by Atkins and Wakimoto (1991), particularly for MB25
and MB1. It is remarkable that the different parametrizations produce very similar diagrams at 07:00 LT, in
fact for MB1 they are exactly the same. Every diagram at 07:00 LT shows the low‐level inversion described in
the characterization (Figure 4), although most of them produce an unstable layer below 900 hPa not
recorded in the observations. On MB0 and MB1 profiles present anomalies in midlevels, rendering the ϴe

deficit value unreliable. The results for 13:00 LT yield a poor performance on low levels. The stability of
the layer is not properly reproduced for any day, although the general profile is similar to those recorded
by Atkins and Wakimoto (1991). Evaluating the ϴe deficit at 13:00 LT the WRF6 microphysics yields very
similar values for every study case, above the 20 °C characteristic threshold. The Morrison parametrization
generates different values for each case, only reaching the defined threshold on MB25 and MB1, in line with
what this value is expected to do on microburst conducing situations. Nevertheless, it tends to overestimate
the values on MB0 and MB1 for both PBL schemes, according to the profiles observed (Atkins &
Wakimoto, 1991).

4.2. Morrison‐MYJ Simulation for MB1

The reasons to select the Morrison‐MYJ simulation for the dynamics assessment are deducted from results
presented in the following subsections. In brief, no definitive conclusions can be taken from the variables

Figure 6. Thermodynamic diagrams for each date at morning and afternoon. Each diagram comprises temperature (solid lines), dew point temperature (short
dashed lines), and CAPE (long dashed thin lines) for every parametrization used as per legend.
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assessment, as no one presents a clear difference between parametrizations to select one as best performer.
Nevertheless, the Morrison microphysics generally outperforms the WRF6. Then, to choose the best model
configuration, we have to use the initial count based on divergence (section 4.3). From these results it is
evident that the Morrison‐MYJ has to be selected, as the Morrison‐MYNN produces no microbursts on MB1.

On MB1, the MIST project records a single high‐reflectivity microburst from 14:19 to 14:28 LT, which is
extensively documented by radar and direct observation (Kingsmill & Wakimoto, 1991; Wakimoto &
Bringi, 1988). The event takes place to the north east of the geographical domain, outside themesoscalar sur-
face network, but it is detected by the three Doppler radar stations. The Morrison‐MYJ simulation produced
three different microbursts on MB1, at 12:42, 13:00, and 13:24 LT, all of them in the north east corner of D4.
From these, the one simulated at 13:03 LT is chosen, as it is the best defined. Figures 8 and 9 present the life
cycle of the simulated high‐reflectivity microburst.

The cross sections at 12:51 and 12:54 LT (not shown) display a 50 dBZ core descending from 550 to 700 hPa as
it travels south. At 12:57 LT (Figure 8) the nucleus of the convective cell is formed by ice above 600 hPa and
water below, which is already initiating precipitation. A strong updraft is present in the upper part of the
core, air entrainment is taking place from the north at 700 hPa and the influence of the outflow produced
by another microburst can be seen to the north at low levels. At 13:00 LT the precipitation shaft reaches
the surface, and the downdraft is properly formed with w below−6 m s−1, pulling down the reflectivity core.
The initiation of surface divergence can be seen at low levels, as well as an updraft to the north of the micro-
burst due to the interaction with a former outflow. At 13:03 LT the downdraft attains maximum intensity,
with w under −9 m s−1 very close to the ground. The cross section shows an approximately 2‐km wide pre-
cipitation shaft, the 50 dBZ core reaching the ground, divergent winds near the surface, a 4‐ to 5‐km wide
outflow and weak updrafts generated by it at both sides. At 13:06 LT the ice over 600 hPa has depleted,
the reflectivity core is collapsing, and the w is receding back to 6 m s−1. The outflow is approximately
5‐km wide and 800‐m deep. At 13:09 LT the downdraft is quickly dissipating and the liquid water content
is almost zero, with no reflectivity over 45 dBZ. Divergence and outflow are still visible. At 13:12 LT only
a few perturbations below 900 hPa remain, although divergence is present in the surface wind.

Figure 7. Equivalent potential temperature diagrams for each date at morning and afternoon. Each diagram comprises every parametrization used as per legend.
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The plots in Figure 9 depict the surface wind vectors for the Morrison‐MYJ simulation on MB1, the wind
speed and several contours, properly reproducing the event. At 12:57 LT the temperature lapse rate near
the microburst is still below −7.5 °C km−1 (no green contours can be seen near the black line). The 35
dBZ core has descended below 2,000 m AGL (orange contour). The outflow produced by another microburst
can be seen to the north east. Despite the low‐level winds depicted in the cross section (Figure 8), at 13:00 LT
divergence cannot be properly seen in the surface wind field. Nevertheless, at this time, precipitation has
reached the ground (light blue contour) and a shaft of minimum w below −6 m s−1 can be seen (dark blue
contour). At 13:03 LT the surface wind field properly generates the divergence and the wind speeds of the
microburst outflow, with the center of divergence reaching over 15 m s−1. First pools of cold air appear near
the microburst center (yellow contour), and this cooling makes the temperature lapse rate to reach above
−7.5 °C in some spots (green contour). In addition, the precipitation, reflectivity, and w contours widen,
which shows an intensification of these variables correlated with the cross section (Figure 8). At 13:06 LT
the outflow reaches maximum intensity with wind speeds over 15 m s−1 near the microburst divergent cen-
ter (Figure 9). The pools of cold air near the surface are evident, and the w weakens. At 13:09 LT divergence
and outflow are still visible, but the wind speed intensity is already decreasing, and the minimum w shaft is
above −6 m s−1, in correlation with the cross section (Figure 8). At 13:12 LT the divergence is present in the
surface wind, but it cannot be considered a microburst anymore as most of the outflow is below 10 m s−1 in
wind speed.

Figure 8. Vertical cross section for a Morrison‐MYJ simulated microburst event, at 3‐min intervals, depicting wind vectors, w, reflectivity, liquid, and ice water
content, as per legend. Surface scale is km from the center of divergence. Plots correspond to sections depicted in Figure 9.

10.1029/2019JD031791Journal of Geophysical Research: Atmospheres

BOLGIANI ET AL. 12 of 23



Overall, the WRF model can properly simulate the dynamics of the high‐reflectivity microburst. The timing
and dimensions correspond to the microburst characterization, the water phases and reflectivity core evolu-
tion is according to the described process, midlevel air entrainment can be seen, the acceleration of the

Figure 9. Horizontal plots depicting the surface wind vectors for a Morrison‐MYJ simulated microburst event, at 3‐min
intervals. Top: wind speeds, as per legend. Bottom: contours of areas where each variable meets the defined thresholds,
as per legend. The black line depicts the section used for vertical cross section in Figure 8.
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downdraft below the cloud base is evident (Figure 8), a well‐defined outflow is simulated, reaching ΔV ≥ 30
m s−1 across the divergent center (Figure 9). It can even be argued if the microburst generates from the flow
interaction with the previous outflow boundary.

Comparing with the observations (Kingsmill & Wakimoto, 1991; Wakimoto & Bringi, 1988), the simulation
takes place 80 min before the recorded microburst and in the same quadrant of the domain field, although
farther from the surface network than registered. It is remarkable that the microburst detected is generated
by a convective cell growing next to an older cell, situated north east from it. Despite this older cell does not
produce any microburst as the model does, the simulation properly generates both convective systems. The
simulation displays a general wind flow similar to the conditions described by Wakimoto and Bringi (1988),
and the 0 °C level is close to the observed level at 550 hPa. Although Kingsmill and Wakimoto (1991) show
the reflectivity core reaching higher than 10 km AGL, the reflectivity values, timing and heights of the base
of the core descending to the ground are very close to the radar data gathered. The w values derived from the
radar also show large positive intensities above 5 km AGL before the microburst and negative values only
below 2.5 km AGL at microburst intensity, as the model depicts.

4.3. Characteristic Variables

Table 1 summarizes the results of the surface wind divergence and speed evaluation. The Morrison‐MYJ
simulation yields 22 microbursts for MB25, 3 for MB1, and 0 for MB0 (35, 9, and 0 time steps, respectively),
very close to the numbers of events observed (Atkins & Wakimoto, 1991). The Morrison‐MYNN simulation
presents an underestimation for MB25 andMB1, while it simulates a single microburst for MB0. BothWRF6
simulations produce a large overestimation, most notable on MB1 where WRF6‐MYJ generates 97 micro-
bursts and WRF6‐MYNN simulates 53 events.

These results show a clear difference between microphysics parametrizations, with amarked overestimation
for WRF6, which immediately renders this microphysics parametrization as a poor performer for this study.
The PBL parametrizations yield more similar results but a tendency of underestimation for MYNN.
Morrison‐MYNN yields tolerable results overall, and the underestimation presented on MB25 and MB1
would be acceptable but for the fact that it generates one microburst on MB0, where the mesoscale condi-
tions simulated are not conductive to microburst at all. Morrison‐MYJ is the best performer, presenting
the results most similar to observations. It is remarkable that the simulations generate the microbursts in
local time windows very close to those recorded by Atkins and Wakimoto (1991) and in line with
Figure 2.

Before evaluating the variables depicted in the following figures, a consideration of the method used for the
assessment has to be made. As the selected grid point is approximately the center of the microburst and this
may not be the most critical point for every variable, some values may not be properly represented. Even
more, some microbursts travel notably during their life span due to the prevailing winds, which alters the
results shown over time. Thus, the values produced may not show the complete picture of the event.
Overall, it can be verified in Figures 10, 11, and 12 that the major differences appear between the microphy-
sics parametrizations and not between the PBL parametrizations. In fact, the similarities between the results
forWRF6 considering both PBL parametrizations are remarkable. Evaluating the standard deviations for the
±30 min window of each variable (results not shown), it becomes evident that the MYNN PBL

Table 1
Number of Microbursts Simulated for Each Date by Every Parametrization Used. Note. Time steps comprised by those microbursts and local time window in which they
are generated. The name for each study case indicates the number of microbursts observed for that date.

Simulation
parameters

Study cases

MB25 MB1 MB0

Microbursts Time steps Local time Microbursts Time steps Local time Microbursts Time steps Local time

Morrison‐MYJ 22 35 15:00–19:00 3 9 12:00–14:00 0 / /
Morrison‐MYNN 14 32 15:00–19:00 0 / / 1 3 20:00–21:00
WRF6‐MYJ 75 108 12:00–19:00 97 84 11:00–18:00 12 25 13:00–20:00
WRF6‐MYNN 44 68 12:00–18:00 53 72 12:00–17:00 14 54 10:00–19:00
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Figure 10. Values for the characteristic variables over the divergence center for each simulated microburst in a ±30 min
time window from maximum wind (t = 0), for MB25 and every parametrization used. Color lines depict each simulated
microburst, black lines depict averages.
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Figure 11. As Figure 10 for MB1.
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Figure 12. As Figure 10 for MB0.
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parametrization generates a smaller dispersion than the MYJ parametrization, as it yields lower results for
the majority of variables and cases. This can be clearly seen in the surface temperature plots for MB25
(Figure 10), where the dispersion values are 0.85 for Morrison‐MYNN, 1.00 for WRF6‐MYNN, 1.21 for
WRF6‐MYJ, and 1.47 for Morrison‐MYJ. Another example would be the temperature lapse rate for the same
date, generating 0.41 for Morrison‐MYNN, 0.43 for WRF6‐MYNN, 0.55 for WRF6‐MYJ, and 0.76 for
Morrison‐MYJ.

Figure 10 presents the variables for every microburst simulated on MB25. It shows that the average maxi-
mum surface wind speed behaves in a pattern similar to the typical process description and complies with
the defined wind conditions (Fujita, 1985). The average peak wind speed is approximately 12 m s−1, being
this result very consistent for every simulation. The wind speed is more or less stable up to−6 min, returning
to approximately the initial speed at +6 min; thus, the event lasts between 6 and 12 min. Both speed and
duration are in line with the defined microburst characterization. This would indicate that this variable is
properly simulated by the model. Attending to the observations for MB25 (see section 2.1) some discrepan-
cies can be noted. The average maximum wind speed is approximately 3 m s−1 lower than the observed
speeds, and no simulation shows wind speeds larger than 20 m s−1. To correct the methodical defects stated
earlier, the wind gust plots are evaluated for every event and simulation (not shown). The Morrison‐MYJ
simulation produces two microbursts with gusts over 20 m s−1, while the Morrison‐MYNN produces one,
the WRF6‐MYJ generates nine, and the WRF6‐MYNN simulates two. No simulation generates events with
wind gusts over 25 m s−1 on MB25. Thus, the wind speed variable complies with the characteristics of a
microburst but underestimates the maximum intensity. The peak in wind speed is coordinated with a
sudden change in wind direction (Figure 10), concurring with the expected microburst process. The rotation
is typically less than 90° to a southbound direction from the prevailing western winds. It usually occurs at−3
or 0 min and takes about 15 min to veer back to the original direction. Due to the lack of observations for this
variable, it is difficult to evaluate if it is properly simulated.

The minimum negative w component of the wind in the lowest 2,000 m AGL yields mixed results
(Figure 10). The sudden onset, timing, and duration of the subsidence are coordinated with the wind speed
increase on the surface, reaching the lowest values at 0 min, in line with the genesis of the event (Wilson
et al., 1984). Nevertheless, the averages for every simulation are typically over−4m s−1, and only a few simu-
latedmicrobursts reach velocities under−6m s−1. This discrepancy from the characteristic average of−12m
s−1 (Hjelmfelt, 1988) makes this variable a weak point for these simulations, which is noteworthy as the w is
the main process in the microburst event. Maximum reflectivity for the lowest 2,000 m AGL produces differ-
ent results for each microphysics parametrization. Every simulation produces a sharp increase in coordina-
tion with the maximumwind speed, reaching the maximum reflectivity value at 0 min. This is in accordance
with the microburst development and would correspond to the descending reflectivity nucleus (Kingsmill &
Wakimoto, 1991; Wakimoto & Bringi, 1988). Averages for the Morrison scheme are above the 35 dBZ
threshold. The WRF6 parametrization shows results below the limit, nevertheless, as the variable presents
the expected behavior and it is properly coordinated with every other variable, the deficit can be
considered negligible.

Temperature lapse rate results (Figure 10) show values below −7.5 °C km−1 before the microburst event for
every simulation, in agreement with the characterization. A sharp increase of the lapse rate is coincident
with the increment of maximum wind speed, and the largest value is typically reached at 0 min, as would
expected by the flow of cold air descending from the middle atmosphere (Srivastava, 1985). Afterwards,
the variable tends to decrease towards the original value for the WRF6 parametrization but remains the
same for the Morrison‐MYNN and slightly increases for the Morrison‐MYJ. The performance of microphy-
sics parametrizations for precipitation is similar to reflectivity. A maxima is noted at 0 min, as expected per
the high‐reflectivity microburst development (Srivastava, 1985), Morrison parametrizations clearly exceed
the 0.25‐mm limit, while the WRF6‐MYNN does not reach the minimum. Finally, surface temperature also
behaves as expected (Proctor, 1989) although values should be lower. The parcel of air descended from
colder layers of the atmosphere creates a sharp decrease of temperature for almost every simulation,
typically around −3 °C, which is above the −4.2 °C average anomaly observed for MB25 (see section 2.1).

The variables for every microburst simulated on MB1 are presented in Figure 11. As evident on Table 1, the
Morrison‐MYNN simulation produces no microbursts; thus, it generates no results for this case. Evaluating
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the wind speed, the simulations are very consistent with the results produced for MB25, in behavior,
duration of peak winds and wind speed. Wind direction also shows prevailing westerly winds and a change
coordinated with the maximum wind speed; although for this case the change is larger than for MB25
(Figure 10), and winds tend to veer back to a more southerly direction than original. The minimum w for
the lowest 2,000 m AGL (Figure 11) presents a similar behavior than for MB25, although for MB1 intensities
are slightly closer to−4m s−1 for theWRF6 simulations, and the averageminimumw is approximately−6m
s−1 for the Morrison‐MYJ parametrization. Nevertheless, the simulations are far from the characterization,
and the variable remains as a weak result for these simulations. Reflectivity once again presents the
Morrison‐MYN simulations above the 35‐dBZ limit, while the WRF6 simulations are below 30 dBZ on aver-
age. Temperature lapse rate produces a largely unstable situation for every simulation onMB1, close to being
superadiabatic right before the microbursts are simulated. After the event the variable slowly decreases
towards its original value. WRF6‐MYJ does not comply with the characteristic threshold for precipitation,
while the WRF6‐MYNN barely reaches it. The surface temperature anomaly behaves similar to reflectivity
for MB1. The Morrison‐MYJ simulations show a marked drop coordinated to the microburst, close to
−6 °C, while the WRF6 simulations present smaller anomalies.

Concerning the variables for MB0, shown on Figure 12, no microburst is simulated by the Morrison‐MYJ;
thus, it generates no results for the figure. The Morrison‐MYNN simulation generates a single microburst
with notable differences to the variables described for MB25 (Figure 10) and MB1 (Figure 11). Wind speed
and minimum w behave in a similar pattern. Nevertheless, the wind direction shows a southerly flow with
a slight change only before the maximum speed, the reflectivity produced is above 50 dBZ, and the precipita-
tion is much larger than for previous cases. At the same time, temperature lapse rate presents a significantly
less unstable condition and surface temperature is notably lower; both presenting only slight modifications
to the maximum wind speed. All these results show that, despite producing a microburst when none was
observed, the simulation is generating a difference in the variables, according to the differences in the ther-
modynamic situation shown in section 4.1.

The variables for the twoWRF6 parametrizations (Figure 12) do not seem to respond in the same way to the
changes in the thermodynamic conditions. There are only a few changes from the MB25 and MB1 cases,
being the wind direction the most notable. This presents a southerly general flow, seems more chaotic than
for the other cases, and does not generate a sharp and coordinated change to the maximum wind speed.
Other than that, reflectivities are over 50 dBZ, and surface temperature is slightly lower than the other cases.

4.4. Variables Sensitivity

Table 2 shows the results generated by the detection script (see section 3.3). The assessment of several w
intensities (from ground to 2,000 m AGL) once again shows that the model does not reach the characteristic
threshold for this variable. As an example, when minimum w is individually tested for MB25, the Morrison‐
MYJ parametrization produces 0, 43, and 117 warnings for −9, −6, and −3 m s−1, respectively. Imposing a
threshold of−6m s−1 yields the best results for this variable, very close to the initial time step count based on
divergence for the Morrison‐MYJ simulation (Table 1) and once again below the characteristic intensity.
However, it has to be considered that the average minimum w for simulated microburst is close to −3 m
s−1 (Figures 10, 11, and 12), so it can be assumed that most of the times when these w values are detected
a microburst is not generated in the surface wind field. This makes this individual variable a poor
detection tool.

Evaluating the downburst variables (from ground to 2,000 m AGL), several considerations have to be made.
The threshold forw is set at−3m s−1, as it is the closer value to the average produced by the simulations. It is
remarkable the difference between the Morrison and the WRF6 schemes for the temperature lapse rate on
MB0. In this case, the Morrison parametrization is performing worse, as the observed thermodynamic dia-
gram shows a low‐level instability at 13:00 LT (Atkins & Wakimoto, 1991). It is also notable that, even the
temperature lapse rate producing warnings for the majority of time steps, when it is combined with w,
almost no event is detected. This shows that w is governing the sensitivity of the variables. When reflectivity
is added to the combination, there are no drastic changes, but the results are improved. The combination of
the three variables yields the best detection results for downburst. Assessing the parametrizations, the
Morrison‐MYNN simulation is the best performer in detecting the downburst, as the results are closer to
the number of observed microbursts.
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When the outflow variables are analyzed the surface temperature anomaly shows the better sensitivity to
detect microbursts. For this variable, Morrison‐MYJ shows a good correlation with the thermodynamic
situation (see section 4.1) and the initial microburst count (Table 1). The surface wind speed and precipita-
tion tend to reach the characteristic thresholds in many time steps. The combination of variables presents
the best results when using the wind speed and temperature anomaly. The precipitation adds no useful
information, as almost no difference can be seen when the three variables are combined. Regarding the
parametrizations, the Morrison‐MYJ performs best in detecting the outflow, as it yields a number of events
closer to observations.

5. Conclusions

In this study, several episodes of high‐reflectivity microbursts are simulated using the WRF model at spatial
resolutions of 400 m and temporal resolutions of 3 min. Different microphysics and PBL parametrizations
are tested to find the best model configuration for these events. Every parametrization used seems to capture
the thermodynamic diagrams, the diurnal variation, and the characteristic variables of the microburst. The
timing and coordination between variables are according to observations and characteristic process. Also the
average values are in agreement with the characteristic thresholds, although there is a tendency to underes-
timate intensities, most notable for w. The dynamics of the microburst are properly reproduced too, with a
good simulation of dimensions, time span, and dynamic development of events.

The Morrison microphysics scheme slightly outperforms the WRF6 parametrization in the modeling of the
variables, although differences are not remarkable. As variables cannot be used as a definitive discriminator,
the total number of microburst simulated remains the main difference between parametrizations. When this
is considered, the Morrison parametrization clearly outperforms the WRF6. The sensitivity of the variables
and the number of microbursts simulated by the WRF6 microphysics scheme do not seem to present a cor-
relation with the different thermodynamic situation of each day, although these are properly reproduced.
The Morrison‐MYJ yields better results in the total count and performs better in capturing the outflow when
the variables' thresholds are considered. The Morrison‐MYNN produces better results in the simulation
of the variables related to the downburst and tends to simulate more uniform events as it has lower
dispersion values.

One important issue requiring further study is the simulation of w. The analysis performed in this paper
leads to the conclusion that the WRF model largely underestimates the intensity of this variable.

Table 2
Number of Time Steps That Yield Test Warnings as per the Conditions Demanded, for Every Study Case and Parametrization Used

Downburst (from 0 to 2,000 m AGL) Outflow

w (m s−1) ≤ −9 ≤ −6 ≤ −3 — — ≤ −3 ≤ −3 ≤ −3
T Lapse Rate (°C) — — — ≤ −7.5 — ≤ −7.5 ‐ ≤ −7.5
Reflectivity (dBZ) — — — ‐ ≥ 35 — ≥ 35 ≥ 35
Wind Speed (m s−1) ≥ 10 — — ≥ 10 ≥ 10 ≥ 10
T Difference (°C) — ≤ −4.2 — ≤ −4.2 — ≤ −4.2
Precipitation (mm) — — ≥ 0.25 — ≥ 0.25 ≥ 0.25

Positive test results (time steps) for conditions above
MB25 Morrison‐MYJ 0 43 117 185 95 87 87 50 183 43 119 31 80 31

Morrison‐MYNN 0 10 61 190 77 50 60 48 156 7 113 4 49 4
WRF6‐MYJ 0 40 134 202 143 128 127 120 183 116 155 65 122 63

WRF6‐MYNN 0 4 111 223 156 111 103 95 154 50 146 30 73 30
MB1 Morrison‐MYJ 1 5 38 140 32 38 25 24 17 17 60 8 15 8

Morrison‐MYNN 0 0 2 140 10 2 1 1 0 0 33 0 0 0
WRF6‐MYJ 7 86 135 140 133 135 124 124 116 109 130 73 81 68

WRF6‐MYNN 5 79 123 140 122 123 113 113 92 83 118 60 77 58
MB0 Morrison‐MYJ 0 5 96 0 208 0 84 0 43 0 238 0 16 0

Morrison‐MYNN 0 1 147 0 240 0 125 0 29 0 240 0 19 0
WRF6‐MYJ 0 56 240 161 240 36 236 13 161 119 240 5 156 5

WRF6‐MYNN 0 30 240 124 240 15 240 0 122 85 240 4 121 4
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Nevertheless, when the scientific literature is reviewed, it can be noted that the fist value proposed is just a
mere −3.6 m s−1. Although the characterization of this variable for the microburst is much larger, no study
states a specific minimum value. At the light of the results of this paper, with an averagew value very close to
the aforementioned figure, it may be considered if high‐reflectivity microbursts can develop with weaker w
intensities than expected by the present knowledge.

Overall, it can be concluded that the WRF properly simulates the variables and dynamics of a high‐
reflectivity microburst. Although the results may appear to be suboptimal, it has to be considered that the
WRF is a mesoscale model, not optimized to simulate microscale events. It has also to be noted that the
microburst is a complex event, governed by several microphysics processes and atmospheric variables very
sensitive to small changes, and in turn to natural variability, which renders it a meteorological phenomenon
very hard to prognosticate in exact time and position even using real time data. When accounting for the
internal variability, it cannot be expected for the model to simulate exactly the same number of microbursts,
in the exact area and times. Thus, the simulations yielded by the Morrison‐MYJ and the Morrison‐MYNN
parametrizations are close enough to observations to consider them as good performers.

Further research is required to fine‐tune theWRFmodel for microburst detection, which will also depend on
the geographical area of study. No specific variable shows the sensitivity required to be used as a prognostic
tool. Nevertheless, the authors consider that using the available data and numerical predicting models,
forecasting algorithms may already be viable. The application of existing warning indices and forecasting
algorithms on numerical prediction models may be studied. From the results of this paper, the sharp
variation over short periods of variables as surface wind divergence, temperature lapse rate, w, or ϴe should
be considered as possible precursors. Another possibility is to develop a forecasting algorithm based on dif-
ferent detection phases, which may use several simulations according to the performance of each parametri-
zation for each microburst phase.
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