28 research outputs found

    Détection de nouvelles candidates au rang de naines brunes de types spectraux plus tardifs que T5 avec le Wide-field Infrared Survey Explorer (WISE)

    Full text link
    Les naines brunes sont, en termes de masse, les objets astrophysiques intermédiaires entre les planètes géantes gazeuses et les étoiles de faible masse. Elles se forment de la même manière que les étoiles, par contraction gravitationnelle d’un fragment de nuage de gaz moléculaire ayant atteint la limite de Jeans, mais se différencient par leur incapa- cité à produire les réactions de fusion de l’hydrogène dans leur cœur. Les naines brunes sont par conséquent des objets qui se refroidissent graduellement, et dont les propriétés spectrales évoluent au cours du temps. Ce mémoire présente la recherche de nouvelles candidates de type spectral T tardif et Y, dans le but de compléter le relevé des naines brunes du voisinage solaire. Cette recherche est motivée par deux objectifs principaux. Premièrement, un échantillon com- plet des objets de faible masse est nécessaire pour contraindre correctement la limite aux faibles masses de la fonction de masse initiale des nuages interstellaires, problème clé en astrophysique actuellement. Deuxièmement, les naines brunes de types spectraux tardifs sont les objets stellaires dont les propriétés atmosphériques sont les plus semblables à celles des planètes géantes gazeuses. Par conséquent, la recherche de nouvelles naines brunes permet indirectement d’améliorer nos connaissances des exoplanètes, sans être contraints par la proximité d’étoiles brillantes. À partir du WISE All-Sky Source Catalog, nous avons établi un échantillon de 55 candidates naines brunes répondant aux critères photométriques attendus. Parmi ces can- didates, 17 ont fait l’objet d’un suivi photométrique en bande J à l’Observatoire du Mont-Mégantic, et 9 ont pu être détectées. De ces 9 détections, 4 objets présentent des mouvements propres cohérents avec ceux de naines brunes.In terms of mass, brown dwarfs are the objects that bridge the gap between giant gaseous planets and low-mass stars. They form in the same way as stars, by gravita- tional collapse of a molecular cloud fragment that reached the Jeans limit, but differ by their inability to produce hydrogen nuclear fusion in their core. As a consequence, brown dwarfs are objects gradually cooling, and their spectral properties evolve over time. This thesis presents the search for new late T and Y dwarf candidates, in order to complete the sample of known brown dwarfs in the solar vicinity. This pursues two main objectives. First, a complete sample of low-mass objects will allow to better con- strain the low-mass edge of the initial mass function of interstellar clouds, currently one of the key problems in astrophysics. Second, late-type brown dwarfs are the stellar ob- jects that have spectral properties most similar to those of giant gaseous planets. As a consequence, the search for new brown dwarfs also aims to increase our knowledge on exoplanets, without being hindered by the glare of a host star. From the WISE All-Sky Source Catalog, we established a sample of 55 brown dwarf candidates having the expected photometric properties. We have been performing a J band follow-up of 17 of these candidates at the Observatoire du Mont-Mégantic, and we detected 9 of them. 4 of these 9 detections present a proper motion that is consistent with those of brown dwarfs

    (65) Cybele is the smallest asteroid at hydrostatic equilibrium, why?

    Full text link
    Context - Cybele asteroids constitute an appealing reservoir of primitive material genetically linked to the outer Solar system. The physical properties (size, shape) of the largest members can be directly measured with high-angular resolution imagers mounted on large (8-m class) telescopes.Aim - We took advantage of the bright apparition of the most iconic member of the Cybele population, (65) Cybele, in July and August 2021 to acquire high angular resolution images and optical light curves of the asteroid that were used to analyze its shape, topography and bulk properties (volume, density).Methods - Eight series of images were acquired with SPHERE+ZIMPOL on the Very Large Telescope (ESO Program ID 107.22QN.001; PI: Marsset) and combined with optical light curves to reconstruct the shape of the asteroid using the ADAM (Viikinkoski et al. 2015), MPCD (Capanna et al. 2013) and SAGE (Bartczak & Dudziński 2018) algorithms.Results - We will present Cybele's bulk properties, including its volume-equivalent diameter and average density, in the context of other low-albedo P-type asteroids. We will show that Cybele's shape and rotation state are entirely compatible to those of a Maclaurin equilibrium figure, opening up the possibility that D≥260 km (M≥1.4x10^19 kg) small bodies from the outer Solar System formed at equilibrium. We will further present the results of N-body simulations used to explore whether the equilibrium shape of Cybele is the result of a large resetting impact (similarly to the case of Hygiea; Vernazza et al. 2020), or if it is primordial (i.e., the result of early internal heating due to the radioactive decay of short- and long-lived radionuclides)

    The equilibrium shape of (65) Cybele: primordial or relic of a large impact?

    Get PDF
    Context. Cybele asteroids constitute an appealing reservoir of primitive material genetically linked to the outer Solar System, and the physical properties (size and shape) of the largest members can be readily accessed by large (8m class) telescopes. Aims. We took advantage of the bright apparition of the most iconic member of the Cybele population, (65) Cybele, in July and August 2021 to acquire high-angular-resolution images and optical light curves of the asteroid with which we aim to analyse its shape and bulk properties. Methods. Eight series of images were acquired with VLT/SPHERE+ZIMPOL, seven of which were combined with optical light curves to reconstruct the shape of the asteroid using the ADAM, MPCD, and SAGE algorithms. The origin of the shape was investigated by means of N-body simulations. Results. Cybele has a volume-equivalent diameter of 263±3 km and a bulk density of 1.55 ± 0.19 g cm−3. Notably, its shape and rotation state are closely compatible with those of a Maclaurin equilibrium figure. The lack of a collisional family associated with Cybele and the higher bulk density of that body with respect to other large P-type asteroids suggest that it never experienced any large disruptive impact followed by rapid re-accumulation. This would imply that its present-day shape represents the original one. However, numerical integration of the long-term dynamical evolution of a hypothetical family of Cybele shows that it is dispersed by gravitational perturbations and chaotic diffusion over gigayears of evolution. Conclusions. The very close match between Cybele and an equilibrium figure opens up the possibility that D ≥ 260 km (M ≥ 1.5 × 1019 kg) small bodies from the outer Solar System all formed at equilibrium. However, we cannot currently rule out an old impact as the origin of the equilibrium shape of Cybele. Cybele itself is found to be dynamically unstable, implying that it was ‘recently’ (<1 Gyr ago) placed on its current orbit either through slow diffusion from a relatively stable orbit in the Cybele region or, less likely, from an unstable, Jupiter-family-comet orbit in the planet-crossing region.This work has been supported by the Czech Science Foundation through grants 20-08218S (J. Hanuš) and 21-11058S (M. Brož), as well as by the National Science Foundation under Grant No. 1743015 (F. Marchis). T. Santana-Ros acknowledges funding from the NEO-MAPP project (H2020-EU-2-1-6/870377). In addition, this work was partially funded by the Spanish MICIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe” by the “European Union” through grant RTI2018-095076-B-C21, and the Institute of Cosmos Sciences University of Barcelona (ICCUB, Unidad de Excelencia ‘María de Maeztu’) through grant CEX2019-000918-M. This research has made use of the Asteroid Families Portal maintained at the Department of Astronomy, University of Belgrade. TRAPPIST is a project funded by the Belgian Fonds (National) de la Recherche Scientifique (F.R.S.-FNRS) under grant PDR T.0120.21. TRAPPIST-North is a project funded by the University of Liège, in collaboration with the Cadi Ayyad University of Marrakech (Morocco). E. Jehin is F.R.S.-FNRS Senior Research Associate

    Constraining the shape and density of binary asteroid (121) Hermione

    Full text link
    Context(121) Hermione is a large binary asteroid [1] located at the outer edge of the asteroid belt in the Cybele region, where asteroids are thought to be linked to the outer Solar System. Hermione has a Ch/Cgh-type that has been linked to CM chondrites. Adaptive optics observations between 2003 and 2008 suggest a rare bilobate shape for the primary [2,3]. However, Hermione's shape and bulk density (ranging between 1.4 and 2 g.cm-3) remain poorly constrained to this day.AimWe acquired spatially resolved images and optical lightcurves of Hermione during its close apparition of September 2021. It was the best chance in 13 years to acquire such high angular resolution images (angular diameter = 0.14"). We aimed to constrain Hermione's 3D shape, hence its volume, and the orbit of its satellite, hence the mass of the system. Combining the volume and the mass allows to constrain the bulk density with high accuracy.MethodsWe obtained 8 series of 5 images with the SPHERE/ZIMPOL instrument on the Very Large Telescope (ESO Program ID 107.22UT.001; PI: P. Vernazza). These images were combined with optical lightcurves and stellar occultations by the ADAM and MPCD methods [4,5] to reconstruct the asteroid's 3D shape. For the determination of the satellite's orbit, we complemented the SPHERE images with a compilation of archival data from other large ground-based AO instruments (KeckII/NIRC2, ESO/VLT/NACO and Gemini-North/NIRI). Then, we used the meta-heuristic algorithm Genoid [6] to accurately determine the orbital elements.ResultsThe determined volume and mass of Hermione yield a new higher bulk density of ~1.7 g.cm-3, more compatible with its Ch/Cgh classification. We will also present our analyse of the shape and compare it with other elongated Ch/Cgh asteroids

    Asteroid (16) Psyche’s primordial shape: A possible Jacobi ellipsoid

    Get PDF
    Context. Asteroid (16) Psyche is the largest M-type asteroid in the main belt and the target of the NASA Psyche mission. It is also the only asteroid of this size (D >  200 km) known to be metal rich. Although various hypotheses have been proposed to explain the rather unique physical properties of this asteroid, a perfect understanding of its formation and bulk composition is still missing. Aims. We aim to refine the shape and bulk density of (16) Psyche and to perform a thorough analysis of its shape to better constrain possible formation scenarios and the structure of its interior. Methods. We obtained disk-resolved VLT/SPHERE/ZIMPOL images acquired within our ESO large program (ID 199.C-0074), which complement similar data obtained in 2018. Both data sets offer a complete coverage of Psyche’s surface. These images were used to reconstruct the three-dimensional (3D) shape of Psyche with two independent shape modeling algorithms (MPCD and ADAM). A shape analysis was subsequently performed, including a comparison with equilibrium figures and the identification of mass deficit regions. Results. Our 3D shape along with existing mass estimates imply a density of 4.20  ±  0.60 g cm−3, which is so far the highest for a solar system object following the four telluric planets. Furthermore, the shape of Psyche presents small deviations from an ellipsoid, that is, prominently three large depressions along its equator. The flatness and density of Psyche are compatible with a formation at hydrostatic equilibrium as a Jacobi ellipsoid with a shorter rotation period of ∼3h. Later impacts may have slowed down Psyche’s rotation, which is currently ∼4.2 h, while also creating the imaged depressions. Conclusions. Our results open the possibility that Psyche acquired its primordial shape either after a giant impact while its interior was already frozen or while its interior was still molten owing to the decay of the short-lived radionuclide 26Al.Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 199.C-0074 (principal investigator: P. Vernazza). P. Vernazza, A. Drouard, M. Ferrais and B. Carry were supported by CNRS/INSU/PNP. J.H. and J.D. were supported by grant 18-09470S of the Czech Science Foundation and by the Charles University Research Programme no. UNCE/SCI/023. E.J. is F.R.S.-FNRS Senior Research Associate. The work of TSR was carried out through grant APOSTD/2019/046 by Generalitat Valenciana (Spain). This work was supported by the MINECO (Spanish Ministry of Economy) through grant RTI2018-095076-B-C21 (MINECO/FEDER, UE)

    Binary asteroid (31) Euphrosyne: ice-rich and nearly spherical

    Get PDF
    Aims. Asteroid (31) Euphrosyne is one of the biggest objects in the asteroid main belt and it is also the largest member of its namesake family. The Euphrosyne family occupies a highly inclined region in the outer main belt and contains a remarkably large number of members, which is interpreted as an outcome of a disruptive cratering event. Methods. The goals of this adaptive-optics imaging study are threefold: to characterize the shape of Euphrosyne, to constrain its density, and to search for the large craters that may be associated with the family formation event. Results. We obtained disk-resolved images of Euphrosyne using SPHERE/ZIMPOL at the ESO 8.2 m VLT as part of our large program (ID: 199.C-0074, PI: Vernazza). We reconstructed its 3D shape via the ADAM shape modeling algorithm based on the SPHERE images and the available light curves of this asteroid. We analyzed the dynamics of the satellite with the Genoid meta-heuristic algorithm. Finally, we studied the shape of Euphrosyne using hydrostatic equilibrium models. Conclusions. Our SPHERE observations show that Euphrosyne has a nearly spherical shape with the sphericity index of 0.9888 and its surface lacks large impact craters. Euphrosyne’s diameter is 268 ± 6 km, making it one of the top ten largest main belt asteroids. We detected a satellite of Euphrosyne – S/2019 (31) 1 – that is about 4 km across, on a circular orbit. The mass determined from the orbit of the satellite together with the volume computed from the shape model imply a density of 1665 ± 242 kg m−3, suggesting that Euphrosyne probably contains a large fraction of water ice in its interior. We find that the spherical shape of Euphrosyne is a result of the reaccumulation process following the impact, as in the case of (10) Hygiea. However, our shape analysis reveals that, contrary to Hygiea, the axis ratios of Euphrosyne significantly differ from those suggested by fluid hydrostatic equilibrium following reaccumulation.This work has been supported by the Czech Science Foundation through grant 18-09470S (J. Hanuš, O. Chrenko, P. Ševeček) and by the Charles University Research program No. UNCE/SCI/023. M.B. was supported by the Czech Science Foundation grant 18-04514J. Computational resources were supplied by the Ministry of Education, Youth and Sports of the Czech Republic under the projects CESNET (LM2015042) and IT4Innovations National Supercomputing Centre (LM2015070). P. Vernazza, A. Drouard, M. Ferrais and B. Carry were supported by CNRS/INSU/PNP. M.M. was supported by the National Aeronautics and Space Administration under grant No. 80NSSC18K0849 issued through the Planetary Astronomy Program. The work of TSR was carried out through grant APOSTD/2019/046 by Generalitat Valenciana (Spain). This work was supported by the MINECO (Spanish Ministry of Economy) through grant RTI2018-095076-B-C21 (MINECO/FEDER, UE). The research leading to these results has received funding from the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation. TRAPPIST is a project funded by the Belgian Fonds (National) de la Recherche Scientifique (F.R.S.-FNRS) under grant FRFC 2.5.594.09.F. TRAPPIST-North is a project funded by the Université de Liège, and performed in collaboration with Cadi Ayyad University of Marrakesh. E. Jehin is a FNRS Senior Research Associate

    A basin-free spherical shape as an outcome of a giant impact on asteroid Hygiea

    Get PDF
    (10) Hygiea is the fourth largest main belt asteroid and the only known asteroid whose surface composition appears similar to that of the dwarf planet (1) Ceres1,2, suggesting a similar origin for these two objects. Hygiea suffered a giant impact more than 2 Gyr ago3 that is at the origin of one of the largest asteroid families. However, Hygeia has never been observed with sufficiently high resolution to resolve the details of its surface or to constrain its size and shape. Here, we report high-angular-resolution imaging observations of Hygiea with the VLT/SPHERE instrument (~20 mas at 600 nm) that reveal a basin-free nearly spherical shape with a volume-equivalent radius of 217 ± 7 km, implying a density of 1,944 ± 250 kg m−3 to 1σ. In addition, we have determined a new rotation period for Hygiea of ~13.8 h, which is half the currently accepted value. Numerical simulations of the family-forming event show that Hygiea’s spherical shape and family can be explained by a collision with a large projectile (diameter ~75–150 km). By comparing Hygiea’s sphericity with that of other Solar System objects, it appears that Hygiea is nearly as spherical as Ceres, opening up the possibility for this object to be reclassified as a dwarf planet.P.V., A.D. and B.C. were supported by CNRS/INSU/PNP. M.Brož was supported by grant 18-04514J of the Czech Science Foundation. J.H. and J.D. were supported by grant 18-09470S of the Czech Science Foundation and by the Charles University Research Programme no. UNCE/SCI/023. This project has received funding from the European Union’s Horizon 2020 research and innovation programmes under grant agreement nos 730890 and 687378. This material reflects only the authors’ views, and the European Commission is not liable for any use that may be made of the information contained herein. TRAPPIST-North is a project funded by the University of Liège, in collaboration with Cadi Ayyad University of Marrakech (Morocco). TRAPPIST-South is a project funded by the Belgian Fonds (National) de la Recherche Scientifique (F.R.S.-FNRS) under grant FRFC 2.5.594.09.F. E.J. and M.G. are F.R.S.-FNRS Senior Research Associates

    The debiased compositional distribution of Near-Earth Objects

    No full text
    International audienceWe report 491 new near-infrared spectroscopic measurements of 420 Near-Earth Objects (NEOs) collected on NASA's IRTF in the context of MITHNEOS (PI: DeMeo). The measurements were combined with previously published data (Binzel et al. 2019) and bias-corrected for albedo variations to derive the intrinsic compositional distribution of the overall NEO population. We also investigated individual subpopulations coming from various escape routes (ERs) in the asteroid belt by use of the dynamical model of Granvik et al. (2018). The resulting distributions reflect well the compositional gradient of the asteroid belt, with decreasing fractions of silicate-rich (S- and Q-type) bodies and increasing fractions of carbonaceous (B-, C-, D- and P-type) bodies as a function of increasing ER distance from the Sun. The compositional match between NEOs and their predicted source populations validates dynamical models used to identify ERs and argues against strong composition change in the main belt between approximately 5 km and 100 m. An exception comes from the overabundance of D-type NEOs from the 5:2J and, to a lesser extent, the 3:1J and ν6 ERs, hinting at the presence of a large population of small D-type asteroids in the main belt. Alternatively, this excess may indicate spectral evolution from D-type surfaces to C and P types due to space weathering or point to preferential fragmentation of D-types in the NEO space. No further evidence for the existence of collisional families in the main belt, below the detection limit of current main-belt surveys, was found in this work

    The Appearance of a "Fresh" Surface on 596 Scheila as a Consequence of the 2010 Impact Event

    No full text
    International audienceDust emission was detected on main-belt asteroid 596 Scheila in 2010 December and was attributed to the collision of a few-tens-of-meters projectile on the surface of the asteroid. In such an impact, the ejected material from the collided body is expected to mainly come from its fresh, unweathered subsurface. Therefore, it is expected that the surface of 596 was partially or entirely refreshed during the 2010 impact. By combining spectra of 596 from the literature and our own observations, we show that the 2010 impact event resulted in a significant slope change in the near-infrared (0.8-2.5 μm) spectrum of the asteroid, from moderately red (T type) before the impact to red (D type) after the impact. This provides evidence that red carbonaceous asteroids become less red with time due to space weathering, in agreement with predictions derived from laboratory experiments on the primitive Tagish Lake meteorite, which is spectrally similar to 596. This discovery provides the very first telescopic confirmation of the expected weathering trend of asteroids spectrally analog to Tagish Lake and/or anhydrous chondritic porous interplanetary dust particles. Our results also suggest that the population of implanted objects from the outer solar system is much larger than previously estimated in the main belt, but many of these objects are hidden below their space-weathered surfaces
    corecore