181 research outputs found

    Evaluation of beneficial and inhibitory effects of nitrate on nodulation and nitrogen fixation in common bean (Phaseolus vulgaris)

    Get PDF
    AbstractThe effects of applied nitrate on symbiotic nitrogen fixation in legumes are complex. Both inhibition and promotion of nodulation by nitrate have been observed in a dose‐dependent manner. The objectives of this study were to determine the effects of nitrate at different concentrations on root nodulation in different genotypes in common bean (Phaseolus vulgaris). Six genotypes were inoculated with the same rhizobial strain and grown hydroponically in growth pouches in a growth chamber and exposed to six nitrate concentrations, including 0, 2.5, 5, 10, 15, and 20 mM for 4 weeks. The tested genotypes included three recombinant inbred lines (RILs, 25, 46, and 70) that differed in their responses to nitrogen (based on observations of one field growing season), their parents (Mist and Sanilac—registered varieties), which are different in N‐fixing abilities, and one nonnodulating mutant (R99). Our results showed that small amounts of nitrate (2.5 and 5 mM) promoted nodule formation and increased nodule biomass, compared with plants in the 0 nitrate control treatment. In contrast, nitrate concentrations over 10 mM inhibited nodulation, resulting in reductions in nodule number and nodule biomass. Nodulation was completely inhibited by 15‐mM nitrate in all the genotypes. Regression analyses indicated that 5‐mM nitrate is the optimum concentration for promoting nodulation as measured by the total number of nodules formed, the number of effective nodules formed, and the nodule biomass formed. In contrast, nitrogen fixation was inhibited by all levels of nitrate. No genotypic differences were observed in nodulation among the three RILs and their parental cultivars, but all were significantly different than R99, a nonnodulating mutant

    Uplift, Feedback, and Buoyancy: Radio Lobe Dynamics in NGC 4472

    Get PDF
    © 2017. The American Astronomical Society. All rights reserved. We present results from deep (380 ks) Chandra observations of the active galactic nucleus (AGN) outburst in the massive early-type galaxy NGC 4472. We detect cavities in the gas coincident with the radio lobes and estimate the eastern and western lobe enthalpy to be (1.1 ± 0.5) × 10 56 erg and (3 ± 1) × 10 56 erg and the average power required to inflate the lobes to be (1.8 ± 0.9) × 10 41 erg s -1 and (6 ± 3) × 10 41 erg s -1 , respectively. We also detect enhanced X-ray rims around the radio lobes with sharp surface brightness discontinuities between the shells and the ambient gas. The temperature of the gas in the shells is less than that of the ambient medium, suggesting that they are not AGN-driven shocks but rather gas uplifted from the core by the buoyant rise of the radio bubbles. We estimate the energy required to lift the gas to be up to (1.1 ± 0.3) × 10 56 erg and (3 ± 1) × 10 56 erg for the eastern and western rims, respectively, constituting a significant fraction of the total outburst energy. A more conservative estimate suggests that the gas in the rim was uplifted at a smaller distance, requiring only 20%-25% of this energy. In either case, if a significant fraction of this uplift energy is thermalized via hydrodynamic instabilities or thermal conduction, our results suggest that it could be an important source of heating in cool core clusters and groups. We also find evidence for a central abundance drop in NGC 4472. The iron abundance profile shows that the region along the cavity system has a lower metallicity than the surrounding undisturbed gas, similar to the central region. This also shows that bubbles have lifted low-metallicity gas from the center

    The High-redshift Clusters Occupied by Bent Radio AGN (COBRA) Survey: Investigating the Role of Environment on Bent Radio AGNs Using LOFAR

    Get PDF
    © 2023. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Bent radio active galactic nucleus (AGN) morphology depends on the density of the surrounding gas. However, bent sources are found inside and outside clusters, raising the question of how environment impacts bent AGN morphology. We analyze new LOw-Frequency Array the LOFAR Two-metre Sky Survey (LoTSS) Data Release II observations of 20 bent AGNs in clusters and 15 not in clusters from the high-z Clusters Occupied by Bent Radio AGN (COBRA) survey (0.35 1.2 Mpc) or bent AGNs in weaker groups rather than the field.Peer reviewe

    High-resolution VLA low radio frequency observations of the Perseus cluster: radio lobes, mini-halo and bent-jet radio galaxies

    Full text link
    We present the first high-resolution 230-470 MHz map of the Perseus cluster obtained with the Karl G. Jansky Very Large Array. The high dynamic range and resolution achieved has allowed the identification of previously-unknown structures in this nearby galaxy cluster. New hints of sub-structures appear in the inner radio lobes of the brightest cluster galaxy NGC 1275. The spurs of radio emission extending into the outer X-ray cavities, inflated by past nuclear outbursts, are seen for the first time at these frequencies, consistent with spectral aging. Beyond NGC 1275, we also analyze complex radio sources harbored in the cluster. Two new distinct, narrowly-collimated jets are visible in IC 310, consistent with a highly-projected narrow-angle tail radio galaxy infalling into the cluster. We show how this is in agreement with its blazar-like behavior, implying that blazars and bent-jet radio galaxies are not mutually exclusive. We report the presence of filamentary structures across the entire tail of NGC 1265, including two new pairs of long filaments in the faintest bent extension of the tail. Such filaments have been seen in other cluster radio sources such as relics and radio lobes, indicating that there may be a fundamental connection between all these radio structures. We resolve the very narrow and straight tail of CR 15 without indication of double jets, so that the interpretation of such head-tail sources is yet unclear. Finally, we note that only the brightest western parts of the mini-halo remain, near NGC 1272 and its bent double jets.Comment: 17 pages, 12 figures, Accepted for publication in MNRA

    The cavity of 3CR 196.1: Hα\alpha emission spatially associated with an X-ray cavity

    Get PDF
    We present a multifrequency analysis of the radio galaxy 3CR 196.1 (z=0.198z = 0.198), associated with the brightest galaxy of the cool core cluster CIZAJ0815.4-0303. This nearby radio galaxy shows a hybrid radio morphology and an X-ray cavity, all signatures of a turbulent past activity, potentially due to merger events and AGN outbursts. We present results of the comparison between ChandraChandra and VLT/MUSE data for the inner region of the galaxy cluster, on a scale of tens of kpc. We discovered Hα\alpha + [N II]λ6584\lambda6584 emission spatially associated with the X-ray cavity (at \sim10 kpc from the galaxy nucleus) instead of with its rim. This result differs from previous discoveries of ionized gas surrounding X-ray cavities in other radio galaxies harbored in galaxy clusters and could represent the first reported case of ionized gas filling an X-ray cavity, either due to different AGN outbursts or to the cooling of warm (104<T10710^4<T\leq10^7 K) AGN outflows. We also found that the Hα\alpha, [N II]λλ6548,6584\lambda\lambda6548,6584 and [S II]λλ6718,6733\lambda\lambda6718,6733 emission lines show an additional redward component, at \sim1000 km\,s1^{-1} from rest frame, with no detection in Hβ\beta or [O III]λλ4960,5008\lambda\lambda4960,5008. We believe the most likely explanation for this redward component is the presence of a background gas cloud since there appears to be a discrete difference in velocities between this component and the rest frame.Comment: 15 pages, 8 figures, ApJ accepted, pre-proof versio

    Fine mapping of qSTV11KAS, a major QTL for rice stripe disease resistance

    Get PDF
    Rice stripe disease, caused by rice stripe virus (RSV), is one of the most serious diseases in temperate rice-growing areas. In the present study, we performed quantitative trait locus (QTL) analysis for RSV resistance using 98 backcross inbred lines derived from the cross between the highly resistant variety, Kasalath, and the highly susceptible variety, Nipponbare. Under artificial inoculation in the greenhouse, two QTLs for RSV resistance, designated qSTV7 and qSTV11KAS, were detected on chromosomes 7 and 11 respectively, whereas only one QTL was detected in the same location of chromosome 11 under natural inoculation in the field. The stability of qSTV11KAS was validated using 39 established chromosome segment substitution lines. Fine mapping of qSTV11KAS was carried out using 372 BC3F2:3 recombinants and 399 BC3F3:4 lines selected from 7,018 BC3F2 plants of the cross SL-234/Koshihikari. The qSTV11KAS was localized to a 39.2 kb region containing seven annotated genes. The most likely candidate gene, LOC_Os11g30910, is predicted to encode a sulfotransferase domain-containing protein. The predicted protein encoded by the Kasalath allele differs from Nipponbare by a single amino acid substitution and the deletion of two amino acids within the sulfotransferase domain. Marker-resistance association analysis revealed that the markers L104-155 bp and R48-194 bp were highly correlated with RSV resistance in the 148 landrace varieties. These results provide a basis for the cloning of qSTV11KAS, and the markers may be used for molecular breeding of RSV resistant rice varieties

    Magnetic Field Amplification in Galaxy Clusters and its Simulation

    Get PDF
    We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure

    Sphingomimetic multiple sclerosis drug FTY720 activates vesicular synaptobrevin and augments neuroendocrine secretion

    Get PDF
    Neurotransmission and secretion of hormones involve a sequence of protein/lipid interactions with lipid turnover impacting on vesicle trafficking and ultimately fusion of secretory vesicles with the plasma membrane. We previously demonstrated that sphingosine, a sphingolipid metabolite, promotes formation of the SNARE complex required for membrane fusion and also increases the rate of exocytosis in isolated nerve terminals, neuromuscular junctions, neuroendocrine cells and in hippocampal neurons. Recently a fungi-derived sphingosine homologue, FTY720, has been approved for treatment of multiple sclerosis. In its non-phosphorylated form FTY720 accumulates in the central nervous system, reaching high levels which could affect neuronal function. Considering close structural similarity of sphingosine and FTY720 we investigated whether FTY720 has an effect on regulated exocytosis. Our data demonstrate that FTY720 can activate vesicular synaptobrevin for SNARE complex formation and enhance exocytosis in neuroendocrine cells and neurons
    corecore