236 research outputs found

    Cerebellar molecular layer interneurons are dispensable for cued and contextual fear conditioning

    Get PDF
    Funding Information: We were supported by the Biotechnology and Biological Sciences Research Council grant BB/H001123/1 (P.W.), the Medical Research Council grants G1100546/2 and G0800399 (P.W.) and the University of Aberdeen (K.L.H.M.-P., M.W.-F., G.R. and P.W.). M.W.F. is currently supported by the Intramural Research Programme at the National Institute of Health, USA. Open Access funding enabled and organized by Projekt DEAL.Peer reviewedPublisher PD

    Controlling the dissociation of ligands from the adenosine A(2A) receptor through modulation of salt bridge strength

    Get PDF
    Controlling the Dissociation of Ligands from the Adenosine A2A Receptor through Modulation of Salt Bridge StrengthElena Segala, Dong Guo, Robert K. Y. Cheng, Andrea Bortolato, Francesca Deflorian, Andrew S. Doré, James C. Errey, Laura H. Heitman, Adriaan P. IJzerman, Fiona H. Marshall, and Robert M. CookeHeptares Therapeutics Ltd, Biopark Broadwater Road, Welwyn Garden City AL7 3AX, U.K.Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University P.O. Box 9502, 2300 RA Leiden, the NetherlandsAbstractThe association and dissociation kinetics of ligands binding to proteins vary considerably, but the mechanisms behind this variability are poorly understood, limiting their utilization for drug discovery. This is particularly so for G protein-coupled receptors (GPCRs) where high resolution structural information is only beginning to emerge. Engineering the human A2A adenosine receptor has allowed structures to be solved in complex with the reference compound ZM241385 and four related ligands at high resolution. Differences between the structures are limited, with the most pronounced being the interaction of each ligand with a salt bridge on the extracellular side of the receptor. Mutagenesis experiments confirm the role of this salt bridge in controlling the dissociation kinetics of the ligands from the receptor, while molecular dynamics simulations demonstrate the ability of ligands to modulate salt bridge stability. These results shed light on a structural determinant of ligand dissociation kinetics and identify a means by which this property may be optimized.Medicinal Chemistr

    Kinetic profiling and functional characterization of 8-phenylxanthine derivatives as A2B adenosine receptor antagonists

    Get PDF
    A2B adenosine receptor (A2BAR) antagonists have therapeutic potential in inflammation-related diseases such as asthma, chronic obstructive pulmonary disease and cancer. However, no drug is currently clinically approved, creating a demand for research on novel antagonists. Over the last decade, the study of target binding kinetics, along with affinity and potency, has been proven valuable in early drug discovery stages, as it is associated with improved in vivo drug efficacy and safety. In this study, we report the synthesis and biological evaluation of a series of xanthine derivatives as A2BAR antagonists, including an isothiocyanate derivative designed to bind covalently to the receptor. All 28 final compounds were assessed in radioligand binding experiments, to evaluate their affinity and for those qualifying, kinetic binding parameters. Both structure-affinity and structure-kinetic relationships were derived, providing a clear relationship between affinity and dissociation rate constants. Two structurally similar compounds, 17 and 18, were further evaluated in a label-free assay due to their divergent kinetic profiles. An extended cellular response was associated with long A2BAR residence times. This link between a ligand's A2BAR residence time and its functional effect highlights the importance of binding kinetics as a selection parameter in the early stages of drug discovery.Medicinal Chemistr

    A Randomized-Trial Evaluation of the Effect of Whose Future Is It Anyway? on Self-Determination

    Get PDF
    Promoting student involvement in planning has become best practice in the field of transition. Research documents the positive impact of such efforts on greater student involvement. Research also suggests that promoting student involvement results in greater student self-determination, but a causal link has not been established. This study used a randomized- trial, placebo control group design to study the impact of intervention with the Whose Future Is It Anyway? process on self-determination. The authors also examined the impact of intervention on transition knowledge and skills. Results indicated that instruction using the Whose Future Is It Anyway? process resulted in significant, positive differences in self- determination when compared with a placebo-control group and that students who received instruction gained transition knowledge and skills.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Development and validation of an electronic health records-based opioid use disorder algorithm by expert clinical adjudication among patients with prescribed opioids

    Get PDF
    Background: In the US, over 200 lives are lost from opioid overdoses each day. Accurate and prompt diagnosis of opioid use disorders (OUD) may help prevent overdose deaths. However, international classification of disease (ICD) codes for OUD are known to underestimate prevalence, and their specificity and sensitivity are unknown. We developed and validated algorithms to identify OUD in electronic health records (EHR) and examined the validity of OUD ICD codes. Methods: Through four iterations, we developed EHR-based OUD identification algorithms among patients who were prescribed opioids from 2014 to 2017. The algorithms and OUD ICD codes were validated against 169 independent “gold standard” EHR chart reviews conducted by an expert adjudication panel across four healthcare systems. After using 2014–2020 EHR for validating iteration 1, the experts were advised to use 2014–2017 EHR thereafter. Results: Of the 169 EHR charts, 81 (48%) were reviewed by more than one expert and exhibited 85% expert agreement. The experts identified 54 OUD cases. The experts endorsed all 11 OUD criteria from the Diagnostic and Statistical Manual of Mental Disorders-5, including craving (72%), tolerance (65%), withdrawal (56%), and recurrent use in physically hazardous conditions (50%). The OUD ICD codes had 10% sensitivity and 99% specificity, underscoring large underestimation. In comparison our algorithm identified OUD with 23% sensitivity and 98% specificity. Conclusions and relevance: This is the first study to estimate the validity of OUD ICD codes and develop validated EHR-based OUD identification algorithms. This work will inform future research on early intervention and prevention of OUD

    Neuronal activity disrupts myelinated axon integrity in the absence of NKCC1b

    Get PDF
    Through a genetic screen in zebrafish, we identified a mutant with disruption to myelin in both the CNS and PNS caused by a mutation in a previously uncharacterized gene, slc12a2b, predicted to encode a Na+, K+, and Cl− (NKCC) cotransporter, NKCC1b. slc12a2b/NKCC1b mutants exhibited a severe and progressive pathology in the PNS, characterized by dysmyelination and swelling of the periaxonal space at the axon–myelin interface. Cell-type–specific loss of slc12a2b/NKCC1b in either neurons or myelinating Schwann cells recapitulated these pathologies. Given that NKCC1 is critical for ion homeostasis, we asked whether the disruption to myelinated axons in slc12a2b/NKCC1b mutants is affected by neuronal activity. Strikingly, we found that blocking neuronal activity completely prevented and could even rescue the pathology in slc12a2b/NKCC1b mutants. Together, our data indicate that NKCC1b is required to maintain neuronal activity–related solute homeostasis at the axon–myelin interface, and the integrity of myelinated axons
    • 

    corecore