46 research outputs found
Incorporation of the C-GOLDSTEIN efficient climate model into the GENIE framework: "eb_go_gs" configurations of GENIE
A computationally efficient, intermediate complexity ocean-atmosphere-sea ice model (C-GOLDSTEIN) has been incorporated into the Grid ENabled Integrated Earth system modelling (GENIE) framework. This involved decoupling of the three component modules that were re-coupled in a modular way, to allow replacement with alternatives and coupling of further components within the framework. The climate model described here (referred to as "eb_go_gs" for short) is the most basic version of GENIE in which atmosphere, ocean and sea ice all play an active role. Among improvements on the original C-GOLDSTEIN model, latitudinal grid resolution is generalized to allow a wider range of surface grids to be used. The ocean, atmosphere and sea-ice components of the "eb_go_gs" configuration of GENIE are individually described, along with details of their coupling. The setup and results from simulations using four different meshes are presented. The four alternative meshes comprise the widely-used 36 × 36 equal-area-partitioning of the Earth surface with 16 depth layers in the ocean, a version in which horizontal and vertical resolution are doubled, a setup matching the horizontal resolution of the dynamic atmospheric component available in the GENIE framework, and a setup with enhanced resolution in high-latitude areas. Results are presented for a spin-up experiment with a baseline parameter set and wind forcing typically used for current studies in which "eb_go_gs" is coupled with the ocean biogeochemistry module of GENIE, as well as for an experiment with a modified parameter set, revised wind forcing, and additional cross-basin transport pathways (Indonesian and Bering Strait throughflows). The latter experiment is repeated with the four mesh variants, with common parameter settings throughout, except for time-step length. Selected state variables and diagnostics are compared in two regards: (i) between simulations at lowest resolution that are obtained with the baseline and modified configurations, predominantly in order to evaluate the revision of the wind forcing, the modification of some key parameters, and the effect of additional transport pathways across the Arctic Ocean and the Indonesian Archipelago; (ii) between simulations with the four meshes, in order to explore various effects of mesh choice.<br/
Nutritional stimulation of commensal oral bacteria suppresses pathogens: the prebiotic concept
Aim: To identify potential oral prebiotics that selectively stimulate commensal, albeit beneficial bacteria of the resident oral microbial community while suppressing the growth of pathogenic bacteria.
Material and Methods: Using Phenotype MicroArrays as a high-throughput method, the change in respiratory activity of 16 oral bacteria in response to 742 nutritional compounds was screened. Most promising prebiotic compounds were selected and applied in single species growth and biofilm formation assays, as well as dual species (beneficial-pathogen) competition assays.
Results: Increased respiratory activity could not always be related to an increase in growth or biofilm formation. Six compounds were used in dual species competition assays to directly monitor if selective nutritional stimulation of the beneficial bacterium results in the suppression of the pathogenic bacterium. Two compounds, beta-methyl-d-galactoside and N-acetyl-d-mannosamine, could be identified as potential oral prebiotic compounds, triggering selectively beneficial oral bacteria throughout the experiments and shifting dual species biofilm communities towards a beneficial dominating composition at invitro level.
Conclusion: Our observations support the hypothesis that nutritional stimulation of beneficial bacteria by prebiotics could be used to restore the microbial balance in the oral cavity and by this promote oral health
The Reciprocal Effects Model Revisited
The reciprocal effects model (REM) predicts a reciprocal relation between academic self-concept and academic achievement, whereby prior academic self-concept is associated with future gains in achievement, and prior achievement is related to subsequent academic self-concept. Although research in this area has been extensive, there has been a paucity of research specifically examining the REM from the standpoint of students who attend academically selective schools. The present research aimed to rectify this gap in the literature by testing the equivalence of the REM across a sample of high school students who attend both academically selective (n = 738) and mixed-ability comprehensive (n = 2,048) schools. Multigroup analyses revealed that the REM existed for both groups and that there were no differences between the groups in either the size or the direction of the paths that constitute the REM. Implications for REM theory and teaching practice are discussed
Spectroscopic And Calorimetric Studies On Trazodone Hydrochloride-Phosphatidylcholine Liposome Interactions In The Presence And Absence Of Cholesterol
The interaction of antidepressant drug trazodone hydrochloride (TRZ) with dipalmitoyl phosphatidylcholine (DPPC) multilamellar liposomes (MLVs) in the presence and absence of cholesterol (CHO) was investigated as a function of temperature by using Electron Paramagnetic Resonance (EPR) spin labeling, Fourier Transform Infrared (FTIR) Spectroscopy and Differential Scanning Calorimetry (DSC) techniques. These interactions were also examined for dimyristoyl phosphatidylcholine (DMPC) multilamellar liposomes by using Electron Paramagnetic Resonance (EPR) spin labeling technique. In the EPR spin labeling studies, 5- and 16-doxyl stearic acid (5-DS and 16-DS) spin labels were used to monitor the head group and alkyl chain region of phospholipids respectively. The results indicated that TRZ incorporation causes changes in the physical properties of PC liposomes by decreasing the main phase transition temperature, abolishing the pre-transition, broadening the phase transition profile, and disordering the system around the head group region. The interaction of TRZ with unilamellar (LUV) DPPC liposomes was also examined. The most pronounced effect of TRZ on DPPC LUVs was observed as the further decrease of main phase transition temperature in comparison with DPPC MLVs. The mentioned changes in lipid structure and dynamics caused by TRZ may modulate the biophysical activity of membrane associated receptors and in turn the pharmacological action of TRZ. (C) 2014 Elsevier B.V. All rights reserved.WoSScopu