1,363 research outputs found

    Measurement of extremely low fluid permeabilities of rocks significant to studies of the origin of life Final report

    Get PDF
    Permeater for measuring low fluid permeabilities of rocks used to study origin of lif

    The effects of stellar winds on the magnetospheres and potential habitability of exoplanets

    Get PDF
    Context: The principle definition of habitability for exoplanets is whether they can sustain liquid water on their surfaces, i.e. that they orbit within the habitable zone. However, the planet's magnetosphere should also be considered, since without it, an exoplanet's atmosphere may be eroded away by stellar winds. Aims: The aim of this paper is to investigate magnetospheric protection of a planet from the effects of stellar winds from solar-mass stars. Methods: We study hypothetical Earth-like exoplanets orbiting in the host star's habitable zone for a sample of 124 solar-mass stars. These are targets that have been observed by the Bcool collaboration. Using two wind models, we calculate the magnetospheric extent of each exoplanet. These wind models are computationally inexpensive and allow the community to quickly estimate the magnetospheric size of magnetised Earth-analogues orbiting cool stars. Results: Most of the simulated planets in our sample can maintain a magnetosphere of ~5 Earth radii or larger. This suggests that magnetised Earth analogues in the habitable zones of solar analogues are able to protect their atmospheres and is in contrast to planets around young active M dwarfs. In general, we find that Earth-analogues around solar-type stars, of age 1.5 Gyr or older, can maintain at least a Paleoarchean Earth sized magnetosphere. Our results indicate that planets around 0.6 - 0.8 solar-mass stars on the low activity side of the Vaughan-Preston gap are the optimum observing targets for habitable Earth analogues.Comment: 8 pages, 3 figures, accepted to Astronomy and Astrophysic

    The solar wind in time – II. 3D stellar wind structure and radio emission

    Get PDF
    In this work, we simulate the evolution of the solar wind along its main-sequence lifetime and compute its thermal radio emission. To study the evolution of the solar wind, we use a sample of solar mass stars at different ages. All these stars have observationally reconstructed magnetic maps, which are incorporated in our 3D magnetohydrodynamic simulations of their winds. We show that angular-momentum loss and mass-loss rates decrease steadily on evolutionary time-scales, although they can vary in a magnetic cycle time-scale. Stellar winds are known to emit radiation in the form of thermal bremsstrahlung in the radio spectrum. To calculate the expected radio fluxes from these winds, we solve the radiative transfer equation numerically from first principles. We compute continuum spectra across the frequency range 100 MHz to 100 GHz and find maximum radio flux densities ranging from 0.05 to 2.2 μJy. At a frequency of 1 GHz and a normalized distance of d = 10 pc, the radio flux density follows 0.24 (Ω/Ω☉)0.9 (d/[10pc])-2μJy, where Ω is the rotation rate. This means that the best candidates for stellar wind observations in the radio regime are faster rotators within distances of 10 pc, such as κ1 Ceti (0.73 μJy) and χ1 Ori (2.2 μJy). These flux predictions provide a guide to observing solar-type stars across the frequency range 0.1-100 GHz in the future using the next generation of radio telescopes, such as ngVLA and Square Kilometre Array

    Erratum: The solar wind in time II: 3D stellar wind structure and radio emission

    Get PDF
    This is an erratum to the paper ‘The solar wind in time - II: 3D stellar wind structure and radio emission’, which was published in MNRAS, 483(1), 873, 2019 (Ó Fionnagáin et al. 2019)

    A new fireworm (Amphinomidae) from the Cretaceous of Lebanon identified from three-dimensionally preserved myoanatomy

    Get PDF
    © 2015 Parry et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article

    Koopman-von Neumann Formulation of Classical Yang-Mills Theories: I

    Full text link
    In this paper we present the Koopman-von Neumann (KvN) formulation of classical non-Abelian gauge field theories. In particular we shall explore the functional (or classical path integral) counterpart of the KvN method. In the quantum path integral quantization of Yang-Mills theories concepts like gauge-fixing and Faddeev-Popov determinant appear in a quite natural way. We will prove that these same objects are needed also in this classical path integral formulation for Yang-Mills theories. We shall also explore the classical path integral counterpart of the BFV formalism and build all the associated universal and gauge charges. These last are quite different from the analog quantum ones and we shall show the relation between the two. This paper lays the foundation of this formalism which, due to the many auxiliary fields present, is rather heavy. Applications to specific topics outlined in the paper will appear in later publications.Comment: 46 pages, Late

    Localized induction equation and pseudospherical surfaces

    Full text link
    We describe a close connection between the localized induction equation hierarchy of integrable evolution equations on space curves, and surfaces of constant negative Gauss curvature.Comment: 21 pages, AMSTeX file. To appear in Journal of Physics A: Mathematical and Genera

    Local three-nucleon interaction from chiral effective field theory

    Get PDF
    The three-nucleon (NNN) interaction derived within the chiral effective field theory at the next-to-next-to-leading order (N2LO) is regulated with a function depending on the magnitude of the momentum transfer. The regulated NNN interaction is then local in the coordinate space, which is advantages for some many-body techniques. Matrix elements of the local chiral NNN interaction are evaluated in a three-nucleon basis. Using the ab initio no-core shell model (NCSM) the NNN matrix elements are employed in 3H and 4He bound-state calculations.Comment: 17 pages, 9 figure
    corecore