35 research outputs found

    A Robust Titanium Isophthalate Metal-Organic Framework for Visible-Light Photocatalytic CO2 Methanation

    Full text link
    [EN] Isophthalic acid (IPA) has been considered to build metal-organic frameworks (MOFs), owing to its facile availability, unique connection angle-mode, and a wide range of functional groups attached. Constructing titanium-IPA frameworks that possess photoresponse properties is an alluring characteristic with respect to the challenge of synthesizing new titanium-based MOFs (Ti-MOFs) Here, we report the first Ti-IPA MOF (MIP-208) that efficiently combines the use of preformed Ti-8 oxoclusters and in situ acetylation of the 5-NH2-IPA linker. The mixed solid-solution linkers strategy was successfully applied, resulting in a series of multivariate MIP-208 structures with tunable chemical environments and sizable porosity. MIP-208 shows the best result among the pure MOF catalysts for the photocatalytic methanation of carbon dioxide. To improve the photocatalytic performance, ruthenium oxide nanoparticles were photo-deposited on MIP-208, forming a highly active and selective composite catalyst, MIP-208@RuOx, which features a notable visible-light response coupled with excellent stability and recycling ability.S.W. acknowledges the support from the National Natural Science Foundation of China (22071234) and the Fundamental Research Funds for the Central Universities (WK2480000007). S.N. thanks the Ministerio de Ciencia, Innovacion y Universidades (RTI2018-099482-A-I00 project, the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016), and Generalitat Valenciana grupos de investigacion consolidables (AICO/2019/214 project) and Agencia Valenciana de la Innovacion (INNEST/2020/111 project) for financial support. C.-C.C. acknowledges the support from the Program of China Scholarship Council (201700260093) and PHC Cai YuanPei Project (38893VJ). C.M.-C. is grateful for financial support from the Institut Universitaire de France (IUF) and the Paris Ile-de-France Region -DIM "Respore.'' H.G. thanks the Spanish Ministry of Science and Innovation (Severo Ochoa and RTI2018-098237-CO2-1) and Generalitat Valenciana (Prometeo2017/083) for financial support. The authors thank the staff at Synchrotron SOLEIL and the associated scientists for beamtime and assistance during SCXRD data collections on PROXIMA 2A, as well as Dr. Peng Guo and Dr. Nana Yan from Dalian Institute of Chemical Physics (Chinese Academy of Sciences) for the collection of high-resolution PXRD data for Rietveld refinement.Wang, S.; Cabrero-Antonino, M.; Navalón Oltra, S.; Cao, C.; Tissot, A.; Dovgaliuk, I.; Marrot, J.... (2020). A Robust Titanium Isophthalate Metal-Organic Framework for Visible-Light Photocatalytic CO2 Methanation. Chem. 6(12):3409-3427. https://doi.org/10.1016/j.chempr.2020.10.017S34093427612Dhakshinamoorthy, A., Li, Z., & Garcia, H. (2018). Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 47(22), 8134-8172. doi:10.1039/c8cs00256hChen, L., & Xu, Q. (2019). Metal-Organic Framework Composites for Catalysis. Matter, 1(1), 57-89. doi:10.1016/j.matt.2019.05.018Yeung, H. H.-M., Li, W., Saines, P. J., Köster, T. K. J., Grey, C. P., & Cheetham, A. K. (2013). Ligand-Directed Control over Crystal Structures of Inorganic-Organic Frameworks and Formation of Solid Solutions. Angewandte Chemie International Edition, 52(21), 5544-5547. doi:10.1002/anie.201300440Lu, W., Wei, Z., Gu, Z.-Y., Liu, T.-F., Park, J., Park, J., … Zhou, H.-C. (2014). Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev., 43(16), 5561-5593. doi:10.1039/c4cs00003jDesai, A. V., Sharma, S., Let, S., & Ghosh, S. K. (2019). N-donor linker based metal-organic frameworks (MOFs): Advancement and prospects as functional materials. Coordination Chemistry Reviews, 395, 146-192. doi:10.1016/j.ccr.2019.05.020Zhang, H., Zou, R., & Zhao, Y. (2015). Macrocycle-based metal-organic frameworks. Coordination Chemistry Reviews, 292, 74-90. doi:10.1016/j.ccr.2015.02.012He, Y., Li, B., O’Keeffe, M., & Chen, B. (2014). Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units. Chem. Soc. Rev., 43(16), 5618-5656. doi:10.1039/c4cs00041bWang, H., Zhu, Q.-L., Zou, R., & Xu, Q. (2017). Metal-Organic Frameworks for Energy Applications. Chem, 2(1), 52-80. doi:10.1016/j.chempr.2016.12.002Kuppler, R. J., Timmons, D. J., Fang, Q.-R., Li, J.-R., Makal, T. A., Young, M. D., … Zhou, H.-C. (2009). Potential applications of metal-organic frameworks. Coordination Chemistry Reviews, 253(23-24), 3042-3066. doi:10.1016/j.ccr.2009.05.019Czaja, A. U., Trukhan, N., & Müller, U. (2009). Industrial applications of metal–organic frameworks. Chemical Society Reviews, 38(5), 1284. doi:10.1039/b804680hSilva, P., Vilela, S. M. F., Tomé, J. P. C., & Almeida Paz, F. A. (2015). Multifunctional metal–organic frameworks: from academia to industrial applications. Chemical Society Reviews, 44(19), 6774-6803. doi:10.1039/c5cs00307eRen, J., Dyosiba, X., Musyoka, N. M., Langmi, H. W., Mathe, M., & Liao, S. (2017). Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coordination Chemistry Reviews, 352, 187-219. doi:10.1016/j.ccr.2017.09.005Ohtani, M., Takase, K., Wang, P., Higashi, K., Ueno, K., Yasuda, N., … Kobiro, K. (2016). Water-triggered macroscopic structural transformation of a metal–organic framework. CrystEngComm, 18(11), 1866-1870. doi:10.1039/c6ce00031bReinsch, H., De Vos, D., & Stock, N. (2013). Structure and Properties of [Al4(OH)8(o-C6H4(CO2)2)2]·H2O, a Layered Aluminum Phthalate. Zeitschrift für anorganische und allgemeine Chemie, 639(15), 2785-2789. doi:10.1002/zaac.201300357Li, H., Davis, C. E., Groy, T. L., Kelley, D. G., & Yaghi, O. M. (1998). Coordinatively Unsaturated Metal Centers in the Extended Porous Framework of Zn3(BDC)3·6CH3OH (BDC = 1,4-Benzenedicarboxylate). Journal of the American Chemical Society, 120(9), 2186-2187. doi:10.1021/ja974172gBanerjee, D., & Parise, J. B. (2011). Recent Advances in s-Block Metal Carboxylate Networks. Crystal Growth & Design, 11(10), 4704-4720. doi:10.1021/cg2008304Pagis, C., Ferbinteanu, M., Rothenberg, G., & Tanase, S. (2016). Lanthanide-Based Metal Organic Frameworks: Synthetic Strategies and Catalytic Applications. ACS Catalysis, 6(9), 6063-6072. doi:10.1021/acscatal.6b01935Aguirre-Díaz, L. M., Reinares-Fisac, D., Iglesias, M., Gutiérrez-Puebla, E., Gándara, F., Snejko, N., & Monge, M. Á. (2017). Group 13th metal-organic frameworks and their role in heterogeneous catalysis. Coordination Chemistry Reviews, 335, 1-27. doi:10.1016/j.ccr.2016.12.003Kang, M., Luo, D., Deng, Y., Li, R., & Lin, Z. (2014). Solvothermal synthesis and characterization of new calcium carboxylates based on cluster- and rod-like building blocks. Inorganic Chemistry Communications, 47, 52-55. doi:10.1016/j.inoche.2014.07.015Bourne, S. A., Lu, J., Mondal, A., Moulton, B., & Zaworotko, M. J. (2001). Self-Assembly of Nanometer-Scale Secondary Building Units into an Undulating Two-Dimensional Network with Two Types of Hydrophobic Cavity. Angewandte Chemie International Edition, 40(11), 2111-2113. doi:10.1002/1521-3773(20010601)40:113.0.co;2-fVodak, D. T., Braun, M. E., Kim, J., Eddaoudi, M., & Yaghi, O. M. (2001). Chemical Communications, (24), 2534-2535. doi:10.1039/b108684gBarthelet, K., Riou, D., & Férey, G. (2002). [VIII(H2O)]3O(O2CC6H4CO2)3·(Cl, 9H2O) (MIL-59): a rare example of vanadocarboxylate with a magnetically frustrated three-dimensional hybrid framework. Chemical Communications, (14), 1492-1493. doi:10.1039/b202749fQazvini, O. T., Babarao, R., Shi, Z.-L., Zhang, Y.-B., & Telfer, S. G. (2019). A Robust Ethane-Trapping Metal–Organic Framework with a High Capacity for Ethylene Purification. Journal of the American Chemical Society, 141(12), 5014-5020. doi:10.1021/jacs.9b00913Kim, J.-Y., Norquist, A. J., & O’Hare, D. (2003). Incorporation of uranium(vi) into metal–organic framework solids, [UO2(C4H4O4)]·H2O, [UO2F(C5H6O4)]·2H2O, and [(UO2)1.5(C8H4O4)2]2[(CH3)2NCOH2]·H2O. Dalton Trans., (14), 2813-2814. doi:10.1039/b306733pWang, G., Song, T., Fan, Y., Xu, J., Wang, M., Zhang, H., … Wang, L. (2010). [Y2(H2O)(BDC)3(DMF)]·(DMF)3: A rare 2-D (42.6)(45.6)2(48.62)(49.65.8) net with multi-helical-array and opened windows. Inorganic Chemistry Communications, 13(4), 502-505. doi:10.1016/j.inoche.2010.01.021Mihalcea, I., Henry, N., Clavier, N., Dacheux, N., & Loiseau, T. (2011). Occurence of an Octanuclear Motif of Uranyl Isophthalate with Cation–Cation Interactions through Edge-Sharing Connection Mode. Inorganic Chemistry, 50(13), 6243-6249. doi:10.1021/ic2005584Vougo-Zanda, M., Wang, X., & Jacobson, A. J. (2007). Influence of Ligand Geometry on the Formation of In−O Chains in Metal-Oxide Organic Frameworks (MOOFs). Inorganic Chemistry, 46(21), 8819-8824. doi:10.1021/ic701126tBu, F., & Xiao, S.-J. (2010). A 4-connected anionic metal–organic nanotube constructed from indium isophthalate. CrystEngComm, 12(11), 3385. doi:10.1039/c001284jPanda, T., Kundu, T., & Banerjee, R. (2013). Structural isomerism leading to variable proton conductivity in indium(iii) isophthalic acid based frameworks. Chemical Communications, 49(55), 6197. doi:10.1039/c3cc41939hChen, P.-K., Che, Y.-X., Zheng, J.-M., & Batten, S. R. (2007). Heteropolynuclear Metamagnet Showing Spin Canting and Single-Crystal to Single-Crystal Phase Transformation. Chemistry of Materials, 19(9), 2162-2167. doi:10.1021/cm062801sZhang, L., Qin, Y.-Y., Li, Z.-J., Lin, Q.-P., Cheng, J.-K., Zhang, J., & Yao, Y.-G. (2008). Topology Analysis and Nonlinear-Optical-Active Properties of Luminescent Metal−Organic Framework Materials Based on Zinc/Lead Isophthalates. Inorganic Chemistry, 47(18), 8286-8293. doi:10.1021/ic800871rZhang, J.-P., Ghosh, S. K., Lin, J.-B., & Kitagawa, S. (2009). New Heterometallic Carboxylate Frameworks: Synthesis, Structure, Robustness, Flexibility, and Porosity. Inorganic Chemistry, 48(16), 7970-7976. doi:10.1021/ic900919wMcCormick, L. J., Morris, S. A., Slawin, A. M. Z., Teat, S. J., & Morris, R. E. (2016). Coordination Polymers of 5-Alkoxy Isophthalic Acids. Crystal Growth & Design, 16(10), 5771-5780. doi:10.1021/acs.cgd.6b00853Chen, J., Li, C.-P., & Du, M. (2011). Substituent effect of R-isophthalates (R = –H, –CH3, –OCH3, –tBu, –OH, and –NO2) on the construction of CdIIcoordination polymers incorporating a dipyridyl tecton 2,5-bis(3-pyridyl)-1,3,4-oxadiazole. CrystEngComm, 13(6), 1885-1893. doi:10.1039/c0ce00555jDu, M., Zhang, Z.-H., You, Y.-P., & Zhao, X.-J. (2008). R-Isophthalate (R = –H, –NO2, and –COOH) as modular building blocks for mixed-ligand coordination polymers incorporated with a versatile connector 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole. CrystEngComm, 10(3), 306-321. doi:10.1039/b711447hChen, L., Ye, J.-W., Wang, H.-P., Pan, M., Yin, S.-Y., Wei, Z.-W., … Su, C.-Y. (2017). Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence. Nature Communications, 8(1). doi:10.1038/ncomms15985Yuan, S., Qin, J.-S., Lollar, C. T., & Zhou, H.-C. (2018). Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Central Science, 4(4), 440-450. doi:10.1021/acscentsci.8b00073Rieth, A. J., Wright, A. M., & Dincă, M. (2019). Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture. Nature Reviews Materials, 4(11), 708-725. doi:10.1038/s41578-019-0140-1Dhakshinamoorthy, A., Asiri, A. M., & García, H. (2016). Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie International Edition, 55(18), 5414-5445. doi:10.1002/anie.201505581Alvaro, M., Carbonell, E., Ferrer, B., Llabrés i Xamena, F. X., & Garcia, H. (2007). Semiconductor Behavior of a Metal-Organic Framework (MOF). Chemistry - A European Journal, 13(18), 5106-5112. doi:10.1002/chem.200601003Nasalevich, M. A., Goesten, M. G., Savenije, T. J., Kapteijn, F., & Gascon, J. (2013). Enhancing optical absorption of metal–organic frameworks for improved visible light photocatalysis. Chem. Commun., 49(90), 10575-10577. doi:10.1039/c3cc46398bZhu, J., Li, P.-Z., Guo, W., Zhao, Y., & Zou, R. (2018). Titanium-based metal–organic frameworks for photocatalytic applications. Coordination Chemistry Reviews, 359, 80-101. doi:10.1016/j.ccr.2017.12.013Benoit, V., Pillai, R. S., Orsi, A., Normand, P., Jobic, H., Nouar, F., … Llewellyn, P. L. (2016). MIL-91(Ti), a small pore metal–organic framework which fulfils several criteria: an upscaled green synthesis, excellent water stability, high CO2 selectivity and fast CO2 transport. Journal of Materials Chemistry A, 4(4), 1383-1389. doi:10.1039/c5ta09349jSun, Y., Liu, Y., Caro, J., Guo, X., Song, C., & Liu, Y. (2018). In‐Plane Epitaxial Growth of Highly c ‐Oriented NH 2 ‐MIL‐125(Ti) Membranes with Superior H 2 /CO 2 Selectivity. Angewandte Chemie International Edition, 57(49), 16088-16093. doi:10.1002/anie.201810088Wahiduzzaman, M., Wang, S., Schnee, J., Vimont, A., Ortiz, V., Yot, P. G., … Devautour-Vinot, S. (2019). A High Proton Conductive Hydrogen-Sulfate Decorated Titanium Carboxylate Metal−Organic Framework. ACS Sustainable Chemistry & Engineering, 7(6), 5776-5783. doi:10.1021/acssuschemeng.8b05306Pinto, R. V., Wang, S., Tavares, S. R., Pires, J., Antunes, F., Vimont, A., … Pinto, M. L. (2020). Tuning Cellular Biological Functions Through the Controlled Release of NO from a Porous Ti‐MOF. Angewandte Chemie International Edition, 59(13), 5135-5143. doi:10.1002/anie.201913135Assi, H., Mouchaham, G., Steunou, N., Devic, T., & Serre, C. (2017). Titanium coordination compounds: from discrete metal complexes to metal–organic frameworks. Chemical Society Reviews, 46(11), 3431-3452. doi:10.1039/c7cs00001dTachikawa, T., Tojo, S., Fujitsuka, M., Sekino, T., & Majima, T. (2006). Photoinduced Charge Separation in Titania Nanotubes. The Journal of Physical Chemistry B, 110(29), 14055-14059. doi:10.1021/jp063800qWang, S., Kitao, T., Guillou, N., Wahiduzzaman, M., Martineau-Corcos, C., Nouar, F., … Serre, C. (2018). A phase transformable ultrastable titanium-carboxylate framework for photoconduction. Nature Communications, 9(1). doi:10.1038/s41467-018-04034-wSerre, C., Groves, J. A., Lightfoot, P., Slawin, A. M. Z., Wright, P. A., Stock, N., … Férey, G. (2006). Synthesis, Structure and Properties of Related Microporous N,N‘-Piperazinebismethylenephosphonates of Aluminum and Titanium. Chemistry of Materials, 18(6), 1451-1457. doi:10.1021/cm052149lLi, C., Xu, H., Gao, J., Du, W., Shangguan, L., Zhang, X., … Chen, B. (2019). Tunable titanium metal–organic frameworks with infinite 1D Ti–O rods for efficient visible-light-driven photocatalytic H2 evolution. Journal of Materials Chemistry A, 7(19), 11928-11933. doi:10.1039/c9ta01942aKeum, Y., Park, S., Chen, Y.-P., & Park, J. (2018). Titanium-Carboxylate Metal-Organic Framework Based on an Unprecedented Ti-Oxo Chain Cluster. Angewandte Chemie International Edition, 57(45), 14852-14856. doi:10.1002/anie.201809762Yuan, S., Liu, T.-F., Feng, D., Tian, J., Wang, K., Qin, J., … Zhou, H.-C. (2015). A single crystalline porphyrinic titanium metal–organic framework. Chemical Science, 6(7), 3926-3930. doi:10.1039/c5sc00916bPadial, N. M., Castells-Gil, J., Almora-Barrios, N., Romero-Angel, M., da Silva, I., Barawi, M., … Martí-Gastaldo, C. (2019). Hydroxamate Titanium–Organic Frameworks and the Effect of Siderophore-Type Linkers over Their Photocatalytic Activity. Journal of the American Chemical Society, 141(33), 13124-13133. doi:10.1021/jacs.9b04915Wang, S., Reinsch, H., Heymans, N., Wahiduzzaman, M., Martineau-Corcos, C., De Weireld, G., … Serre, C. (2020). Toward a Rational Design of Titanium Metal-Organic Frameworks. Matter, 2(2), 440-450. doi:10.1016/j.matt.2019.11.002Hendon, C. H., Tiana, D., Fontecave, M., Sanchez, C., D’arras, L., Sassoye, C., … Walsh, A. (2013). Engineering the Optical Response of the Titanium-MIL-125 Metal–Organic Framework through Ligand Functionalization. Journal of the American Chemical Society, 135(30), 10942-10945. doi:10.1021/ja405350uFu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., & Li, Z. (2012). An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction. Angewandte Chemie International Edition, 51(14), 3364-3367. doi:10.1002/anie.201108357Duran, D., Couster, S. L., Desjardins, K., Delmotte, A., Fox, G., Meijers, R., … Shepard, W. (2013). PROXIMA 2A – A New Fully Tunable Micro-focus Beamline for Macromolecular Crystallography. Journal of Physics: Conference Series, 425(1), 012005. doi:10.1088/1742-6596/425/1/012005Reinsch, H., van der Veen, M. A., Gil, B., Marszalek, B., Verbiest, T., de Vos, D., & Stock, N. (2012). Structures, Sorption Characteristics, and Nonlinear Optical Properties of a New Series of Highly Stable Aluminum MOFs. Chemistry of Materials, 25(1), 17-26. doi:10.1021/cm3025445Férey, G., & Serre, C. (2009). Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chemical Society Reviews, 38(5), 1380. doi:10.1039/b804302gFérey, G. (2016). Giant flexibility of crystallized organic–inorganic porous solids: facts, reasons, effects and applications. New Journal of Chemistry, 40(5), 3950-3967. doi:10.1039/c5nj02747kLeshuk, T., Parviz, R., Everett, P., Krishnakumar, H., Varin, R. A., & Gu, F. (2013). Photocatalytic Activity of Hydrogenated TiO2. ACS Applied Materials & Interfaces, 5(6), 1892-1895. doi:10.1021/am302903nChen, X., Liu, L., & Huang, F. (2015). Black titanium dioxide (TiO2) nanomaterials. Chemical Society Reviews, 44(7), 1861-1885. doi:10.1039/c4cs00330fLiu, L., & Chen, X. (2014). Titanium Dioxide Nanomaterials: Self-Structural Modifications. Chemical Reviews, 114(19), 9890-9918. doi:10.1021/cr400624rReinsch, H., Waitschat, S., & Stock, N. (2013). Mixed-linker MOFs with CAU-10 structure: synthesis and gas sorption characteristics. Dalton Transactions, 42(14), 4840. doi:10.1039/c3dt32355bDeng, H., Doonan, C. J., Furukawa, H., Ferreira, R. B., Towne, J., Knobler, C. B., … Yaghi, O. M. (2010). Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science, 327(5967), 846-850. doi:10.1126/science.1181761Foo, M. L., Matsuda, R., & Kitagawa, S. (2013). Functional Hybrid Porous Coordination Polymers. Chemistry of Materials, 26(1), 310-322. doi:10.1021/cm402136zHelal, A., Yamani, Z. H., Cordova, K. E., & Yaghi, O. M. (2017). Multivariate metal-organic frameworks. National Science Review, 4(3), 296-298. doi:10.1093/nsr/nwx013Ding, M., Flaig, R. W., Jiang, H.-L., & Yaghi, O. M. (2019). Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 48(10), 2783-2828. doi:10.1039/c8cs00829aLi, R., Hu, J., Deng, M., Wang, H., Wang, X., Hu, Y., … Xiong, Y. (2014). Integration of an Inorganic Semiconductor with a Metal-Organic Framework: A Platform for Enhanced Gaseous Photocatalytic Reactions. Advanced Materials, 26(28), 4783-4788. doi:10.1002/adma.201400428Cabrero-Antonino, M., Remiro-Buenamañana, S., Souto, M., García-Valdivia, A. A., Choquesillo-Lazarte, D., Navalón, S., … García, H. (2019). Design of cost-efficient and photocatalytically active Zn-based MOFs decorated with Cu2O nanoparticles for CO2methanation. Chemical Communications, 55(73), 10932-10935. doi:10.1039/c9cc04446aUlmer, U., Dingle, T., Duchesne, P. N., Morris, R. H., Tavasoli, A., Wood, T., & Ozin, G. A. (2019). Fundamentals and applications of photocatalytic CO2 methanation. Nature Communications, 10(1). doi:10.1038/s41467-019-10996-2Younas, M., Loong Kong, L., Bashir, M. J. K., Nadeem, H., Shehzad, A., & Sethupathi, S. (2016). Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO2. Energy & Fuels, 30(11), 8815-8831. doi:10.1021/acs.energyfuels.6b01723Mateo, D., Albero, J., & García, H. (2019). Titanium-Perovskite-Supported RuO2 Nanoparticles for Photocatalytic CO2 Methanation. Joule, 3(8), 1949-1962. doi:10.1016/j.joule.2019.06.001Wenderich, K., & Mul, G. (2016). Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chemical Reviews, 116(23), 14587-14619. doi:10.1021/acs.chemrev.6b00327Giang, T. P. L., Tran, T. N. M., & Le, X. T. (2012). Preparation and characterization of titanium dioxide nanotube array supported hydrated ruthenium oxide catalysts. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3(1), 015008. doi:10.1088/2043-6262/3/1/015008Morgan, D. J. (2015). Resolving ruthenium: XPS studies of common ruthenium materials. Surface and Interface Analysis, 47(11), 1072-1079. doi:10.1002/sia.5852Albero, J., Peng, Y., & García, H. (2020). Photocatalytic CO2 Reduction to C2+ Products. ACS Catalysis, 10(10), 5734-5749. doi:10.1021/acscatal.0c00478Mateo, D., Santiago‐Portillo, A., Albero, J., Navalón, S., Alvaro, M., & García, H. (2019). Long‐Term Photostability in Terephthalate Metal–Organic Frameworks. Angewandte Chemie International Edition, 58(49), 17843-17848. doi:10.1002/anie.201911600Mateo, D., Albero, J., & García, H. (2018). Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Applied Catalysis B: Environmental, 224, 563-571. doi:10.1016/j.apcatb.2017.10.071Mateo, D., Albero, J., & García, H. (2017). Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst. Energy & Environmental Science, 10(11), 2392-2400. doi:10.1039/c7ee02287eMateo, D., Asiri, A. M., Albero, J., & García, H. (2018). The mechanism of photocatalytic CO2 reduction by graphene-support

    First Keto-Functionalized Microporous Al-Based Metal–Organic Framework: [Al(OH)(O2CC6H4COC6H4CO2)][Al(OH)(O_{2}C-C_{6}H_{4}-CO-C_{6}H_{4}-CO_{2})]

    No full text
    A new microporous aluminum MOF is reported, which is based on the interconnection of infinite chains of trans-connected AlO6-polyhedra via 4,4′-benzophenonedicarboxylate ions. The framework exhibits nonintersecting channels with a diameter of 8 Å running along the a- and the b-axis. These channels are easily accessible for gas molecules, and the implementation of a keto-group into this MOF makes it an attractive candidate for postsynthetic modification reactions. A careful topological analysis showed that the underlying topology of the framework is based on a tetragonal homogeneous sphere packing

    Structural Studies of Large dsDNA Viruses using Single Particle Methods

    No full text
    Structural studies of large biological assemblies pose a unique problem due to their size, complexity and heterogeneity. Conventional methods like x-ray crystallography, NMR, etc. are limited in their ability to address these issues. To overcome some of these limitations, single particle methods were used. In these methods, each particle image is manipulated individually to find the best possible set of images to reconstruct the 3D structure. The structural studies in this thesis, exploit the advantages of single particle methods.  The large data set generated by the SPI study of PR772 provides better statistics about the sample quality due to the use of GDVN, a container-free sample delivery method. By analyzing the diffusion map, we see that the use of GDVNs as a sample delivery method produces wide range of particle sizes owing to the large droplet that are created.  The high-resolution structure of bacteriophage PR772 confirmed the speculation about the heteropentameric nature of the penton and revealed the new architecture of the vertex complex consisting of a hetero-pentameric penton formed with three copies of P5 and two copies of P31. The beta propeller region of P2, formed by domains I and II is bound to the N-terminal domain of P5. The structure also reveals new conformations of N-terminal and C-terminal region of P3 which play an important role in particle assembly and structural stability.  The study of Melbournevirus revealed the protein composition in a packed particle. The CryoEM structure of Melbournevirus reveals a T=309 capsid with an inner lipid membrane. A dense body was found in the viral particle, a feature not observed in other viruses of the Marseilleviridae family. The density of this body is similar to a nucleic acid-protein complex. This observation, along with the histone-like protein identified during study, suggest genome organization in the viral particle, similar to higher organisms. The soft X-ray microscope operated in the water-window shows the progression of the Cedratvirus lurbo infection in the host cell without the use of chemical fixation, staining, sample dehydration or polymer embedding. The study revealed a significant bioconversion from the host cell to the viral particle at later stages of infection

    Synthesis and fluorosolvatochromic properties of 1,7-annulated indoles

    No full text
    A new family of indole-based fluorescent dyes has been easily synthesized from readily available substrates. The structures of all new compounds were confirmed by NMR, IR, and HRMS and a crystallographic structure has been obtained for the 2,6-dicyanoaniline derivative 3. UV/vis absorption and photoluminescence spectroscopy analyses were performed on push-pull indole derivatives 1, 2 and 4. While the absorption maxima were almost independent of the solvent, the emission energy decreased while increasing the solvent polarity. A linear correlation between the orientation polarizability (Delta f) of the solvent and the Stokes shifts was observed and DFT calculations were carried out to study the influence of the planarity of the structures on the fluorescent quantum yields

    Structural and photoluminescent studies of non-centrosymmetric manganese(II) N-(2-pyridylmethyl)-(L)-alanine) dicyanamide

    Get PDF
    The dinuclear compound, [Mn2(Pyala)2(Dca)2(H2O)]n·2H2O (1) (Pyala = N-(2-pyridylmethyl)-L-alanine and Dca = dicyanamide anion) has been synthesized and characterized by elemental analysis, IR and single crystal X-ray diffraction techniques. The crystal data for C22H26Mn2N10O6: orthorhombic, space group P212121 (no. 19), a = 10.3728(8) Å, b = 15.9780(12) Å, c = 16.3585(13) Å, V = 2711.2(4) Å3, Z = 4, T = 198(2) K, μ(MoKα) = 0.989 mm-1, Dcalc = 1.559 g/cm3, 129607 reflections measured (3.564° ≤ 2Θ ≤ 60.046°), 7923 unique (Rint = 0.0324, Rsigma = 0.0155) which were used in all calculations. The final R1 was 0.0169 (I > 2σ(I)) and wR2 was 0.0458 (all data). The obtained non-centrosymmetric dinuclear Mn(II) complex contains two unique Mn(II) cations with similar octahedral coordination environment. Photoluminescent measurements on the complex in the solid state show that it displays strong photoluminescence at 442 nm

    Structural and magnetic properties of MnIII and CuII tetranuclear azido polyoxometalate complexes: multifrequency high-field EPR spectroscopy of Cu4 clusters with S = 1 and S = 2 ground states

    No full text
    77 FIELD Section Title:Magnetic Phenomena Laboratoire de Physico-Chimie des Solides Moleculaires Institut Lavoisier, UMR 8637,Universite de Versailles Saint-Quentin,Versailles,Fr. FIELD URL: written in English.Two new azido-bridged polyoxometalate compds. were synthesized in acetonitrile/methanol media and their mol. structures have been detd. by X-ray crystallog. The [{(g-SiW10O36)Mn2(OH)2(N3)0.5 (H2O)0.5}2(m-1,3-N3)]10-(1a) tetranuclear MnIII complex, in which an end-to-end N3- ligand acts as a linker between two [(g-SiW10O36)Mn2(OH)2]4- units, represents the first manganese-azido polyoxometalate. The magnetic properties have been studied considering the spin Hamiltonian H = -J1(S1S2+S1*S2*)-J2(S1S1*), showing that antiferromagnetic interactions between the paramagnetic centers (g = 1.98) occur both through the di-(m-OH) bridge (J1 = -25.5 cm-1) and the m-1,3-azido bridge (J2 = -19.6 cm-1). The [(g-SiW10O36)2Cu4(m-1,1,1-N3)2(m-1,1-N3)2]12- (2a) tetranuclear CuII complex consists of two [g-SiW10O36Cu2(N3)2]6- subunits connected through the two m-1,1,1-azido ligands, the four paramagnetic centers forming a lozenge. The magnetic susceptibility data have been fitted. This reveals ferromagnetic interactions between the four CuII centers, leading to an S = 2 ground state (H = -J1(S1S2+S1*S2*)-J2 (S2S2*), J1 = +294.5 cm-1, J2 = +1.6 cm-1, g = 2.085). The ferromagnetic coupling between the CuII centers in each subunit is the strongest ever obsd. either in a polyoxometalate compd. or in a diazido-bridged CuII complex. Considering complex 2a and the previously reported basal-basal di-(m-1,1-N3)-bridged CuII complexes in which the metallic centers are not connected by other magnetically coupling ligands, the linear correlation J1 = 2639.5-24.95*qav between the qav bridging angle and the J1 coupling parameter has been proposed. The electronic structure of complex 2a has also been investigated by using multifrequency high-field ESR (HFEPR) spectroscopy between 95 and 285 GHz. The spin Hamiltonian parameters of the S = 2 ground state (D = -0.135(2) cm-1, E = -0.003(2) cm-1, gx = 2.290(5), gy = 2.135(10), gz = 2.158(5)) as well as of the first excited spin state S = 1 (D = -0.960(4) cm-1, E = -0.080(5) cm-1, gx = 2.042(5), gy = 2.335(5), gz = 2.095(5)) have been detd., since the energy gap between these two spin states is very small (1.6 cm-1). [on SciFinder (R)

    First Keto-Functionalized Microporous Al-Based Metal–Organic Framework: [Al(OH)(O<sub>2</sub>C‑C<sub>6</sub>H<sub>4</sub>‑CO‑C<sub>6</sub>H<sub>4</sub>‑CO<sub>2</sub>)]

    No full text
    Based on the V-shaped linker molecule 4,4′-benzophenonedicarboxylic acid, the new carbonyl-functionalized metal–organic framework (MOF) [Al­(OH)­(O<sub>2</sub>C-C<sub>6</sub>H<sub>4</sub>-CO-C<sub>6</sub>H<sub>4</sub>-CO<sub>2</sub>)], denoted as CAU-8, was discovered employing high-throughput methods. The compound is obtained from 4,4′-benzophenonedicarboxylic acid, Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>·18H<sub>2</sub>O in a mixture of <i>N</i>,<i>N</i>-dimethylformamide (DMF) and water under solvothermal conditions. The structure was determined from single-crystal X-ray diffraction data (<i>I</i>4<sub>1</sub>/<i>a</i>, <i>a</i> = <i>b</i> = 13.0625(5), <i>c</i> = 52.565(2) Å). The framework is based on infinite inorganic building units of <i>trans</i>-connected, corner-sharing AlO<sub>6</sub>-polyhedra. Parallel Al–O-chains are arranged in layers perpendicular to [001]. Within a layer an interchain distance of ∼1.1 nm is observed. The orientation of the Al–O-chains within neighboring layers is perpendicular to each other, along [100] and [010], respectively, and an ABCDA stacking of these layers is observed. The interconnection of these orthogonally oriented chains by the V-shaped dicarboxylate ions results in the formation a three-dimensional framework structure containing one-dimensional channels with a diameter of about 8 Å. The pore walls are lined by the keto-groups. CAU-8 was thoroughly characterized by X-ray powder diffraction (XRPD), thermogravimetric measurements, IR- and Raman-spectroscopy, elemental analysis, and gas sorption experiments using N<sub>2</sub> and H<sub>2</sub> as adsorptives. CAU-8 is stable up to 350 °C in air and exhibits a moderate porosity with a specific surface area of <i>S</i><sub>BET</sub> = 600 m<sup>2</sup>/g and a micropore volume of 0.23 cm<sup>3</sup>/g. Moreover, a detailed topological analysis of the framework was carried out, and an approach for the topological analysis of MOFs based on infinite 1-periodic building units is proposed

    Combined XRD and infrared studies of pyridinium species in (PyH)(3)[PW12O40] single crystals

    No full text
    International audienceThe pyridinium salts of 12-tungstophosphoric acid (PyH)(3)[PW12O40]center dot 2CH(3)CN (1) and (PyH)(3)[PW12O40] (2) have been prepared and studied by single crystal and powder X-ray diffraction (XRD) in order to characterize the crystallographic sites occupied by the pyridinium species. The three PyH+ species are located on two unequivalent sites. Two species are linearly H-bonded to the oxygen atoms of the Keggins unit (alpha species), whereas the third one (beta) forms a bent H-bond. In order to determine the infrared bands characterizing each type of pyridinium species in the 1650-1300 cm(-1) range, infrared spectra have been recorded from room temperature to 100 K. They reveal that only a pyridinium species give rise to the unusual splitting of the PyH+ nu 8b and nu 19b modes, whereas beta pyridinium species lead to a classical pyridinium spectrum
    corecore