3,707 research outputs found

    Leibniz algebroid associated with a Nambu-Poisson structure

    Get PDF
    The notion of Leibniz algebroid is introduced, and it is shown that each Nambu-Poisson manifold has associated a canonical Leibniz algebroid. This fact permits to define the modular class of a Nambu-Poisson manifold as an appropiate cohomology class, extending the well-known modular class of Poisson manifolds

    Alegorías de la historia: imitación épica y modelos historiográficos en Nuevo mundo y conquista de Francisco de Terrazas

    Get PDF
    En este trabajo se analiza cómo Francisco de Terrazas incorpora en su poema Nuevo Mundo y conquista el discurso historiográfico sobre la conquista de México, a partir de los modelos de imitación de la épica. Este procedimiento literario ofrece una visión más compleja sobre los acontecimientos históricos de la conquista. This work studies the rewriting of the historiographical models pertaining to the conquest of Mexico, by focusing on their relationship to the tradition of epic poetry. Terraza’s poem Nuevo mundo y conquista engages in a process of imitation and revision of the historical discourse that narrates the Conquest of Mexico

    Structural analysis and sintering aids effects in La2Ce2O7 proton conductors

    Get PDF
    Global warming is an important problem that has to be solved without delay. The development of environmental-friendly energy technology is needed to deal with this issue. Solid Oxide Fuel Cells (SOFC) technology has been proposed as a real alternative to fossil fuel combustion. Proton conductors like La2Ce2O7 (LDC), has several advantages in comparison with BaCeO3 due to its high stability in H2O or CO2 conditions [1]. Furthermore, for industry application is necessary to low the high sintering temperature of typical electrolyte materials. La2Ce2O7 was synthesized by the freeze-drying precursor method and calcination conditions have been optimized to obtain single phase with high compaction at 1400 ºC for 1h. A fully characterization has been carried out using X-ray powder diffraction and scanning electron microscopy. The total conductivity was determined by complex impedance spectroscopy in dry and wet air. Transmission Electron Microscopy (TEM) was used to clarify certainly the structure of La2Ce2O7 due to its still unknown. SAEDs patterns revealed a disordered fluorite, not appearing secondary reflections typical of pyrochlore superstructure, finishing the controversy around the correct structure in this material [2,3]. Moreover, an exhaustive study about lowering the sintering temperature with Co and Zn as sintering aids has been investigated obtaining electrolytes that can be used for SOFC. The sintering aids were impregnated using cobalt and zinc nitrates in ethanol media. Both sintering aids allow for obtain high dense pellets lowering the sintering temperature 300 ºC and 400 ºC for samples with cobalt and zinc, respectively, without compromising the electrical and microstructural properties (Fig 1).Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    The ESO Spectroscopic facility

    Get PDF
    We present the concept of a novel facility dedicated to massively-multiplexed spectroscopy. The telescope has a very wide field Cassegrain focus optimised for fibre feeding. With a Field of View (FoV) of 2.5 degrees diameter and a 11.4m pupil, it will be the largest etendue telescope. The large focal plane can easily host up to 16.000 fibres. In addition, a gravity invariant focus for the central 10 arc-minutes is available to host a giant integral field unit (IFU). The 3 lenses corrector includes an ADC, and has good performance in the 360-1300 nm wavelength range. The top level science requirements were developed by a dedicated ESO working group, and one of the primary cases is high resolution spectroscopy of GAIA stars and, in general, how our Galaxy formed and evolves. The facility will therefore be equipped with both, high and low resolution spectrographs. We stress the importance of developing the telescope and instrument designs simultaneously. The most relevant R\&D aspect is also briefly discussed.Comment: 6 pages 4 figures , presented at IAU Symposium 334 "rediscovering our galaxy

    Modification of as-cast Al-Mg/B4C composite by addition of Zr

    Get PDF
    Zirconium was used in Al-Mg/B4C composite to improve compocasting efficiency by increasing particle incorporation. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) results revealed that by addition of zirconium a reaction layer containing Zr, Al, B and C is formed on the interface of B4C-matrix. X-ray diffraction (XRD) analysis of extracted particles unveiled that the ZrB2 phase is the main constituent of this layer. Formation of ZrB2 is an exothermic reaction which can rise temperature locally around particles and agglomerates. Rising temperature around agglomerates in conjunction with turbulent flow of melt facilitates agglomerates wetting and dissolving into molten aluminum. As the result, final product contains more uniformly distributed B4C particles. Besides enhancing compocasting efficiency, addition of Zr and formation of reaction layer by improving particle matrix bonding quality, led to increase in ultimate tensile strength and elongation of the composite around 8% and 30%, respectively. SEM observations of the fracture surfaces confirmed that a proper bonding presents at the interface of particles and matrix in presence of Zr.Peer ReviewedPostprint (author's final draft

    Is social media worth it? Investigating the relationship between social media use and exposure and eating attitudes and behaviors.

    Get PDF
    The aim of this study was to investigate whether exposure and usage of social media sites (Instagram and Pinterest) were related to eating disorder behaviors and attitudes. A sample of female undergraduate students at La Salle University completed an online survey which measured social media exposure, media manipulation, and thoughts and behaviors related to eating disorders

    Air quality in the Industrial Heartland of Alberta, Canada and potential impacts on human health.

    Get PDF
    The "Industrial Heartland" of Alberta is Canada's largest hydrocarbon processing center, with more than 40 major chemical, petrochemical, and oil and gas facilities. Emissions from these industries affect local air quality and human health. This paper characterizes ambient levels of 77 volatile organic compounds (VOCs) in the region using high-precision measurements collected in summer 2010. Remarkably strong enhancements of 43 VOCs were detected, and concentrations in the industrial plumes were often similar to or even higher than levels measured in some of the world's largest cities and industrial regions. For example maximum levels of propene and i-pentane exceeded 100 ppbv, and 1,3-butadiene, a known carcinogen, reached 27 ppbv. Major VOC sources included propene fractionation, diluent separation and bitumen processing. Emissions of the measured VOCs increased the hydroxyl radical reactivity (kOH), a measure of the potential to form downwind ozone, from 3.4 s-1 in background air to 62 s-1 in the most concentrated plumes. The plume value was comparable to polluted megacity values, and acetaldehyde, propene and 1,3-butadiene contributed over half of the plume kOH. Based on a 13-year record (1994-2006) at the county level, the incidence of male hematopoietic cancers (leukemia and non-Hodgkin lymphoma) was higher in communities closest to the Industrial Heartland compared to neighboring counties. While a causal association between these cancers and exposure to industrial emissions cannot be confirmed, this pattern and the elevated VOC levels warrant actions to reduce emissions of known carcinogens, including benzene and 1,3-butadiene

    Stability of epitaxial heterostructured materials

    Get PDF
    Heterostructured materials are a new family of artificial compounds where the electronic and ionic properties can be modulated by varying the characteristics of the different material layers. These properties arise from the formation of structural oxygen defects in the crystal lattice that result in the activation of charge electrical carriers. Oxygen-deficient perovskite oxides, such as La1-xSrxCoO3-δ (LSC), present mixed oxide/electronic conduction; however, the long-term instability due to superficial carbonation of LSC-based cathodes is a crucial drawback for their practical application. In this study, thin film-heterostructures of alternating layers of La0.6Sr0.4CoO3-δ and Ce0.8Gd0.2O2-δ (CGO) were deposited on (110) NdGaO3 (NGO) single crystal substrates by pulsed laser deposition (PLD). The number of interfaces and the thickness were varied to obtain epitaxial structures with highly coherence layers. Moreover, two different kinds of architectures, without and with a CGO termination layer, were prepared in order to study the stability of the samples under different thermal cycles in air. Structural characterization was made by using Rocking Curve and Reciprocal Space Mapping techniques. CGO layers are rotated 45º respect to the substrate and LSC ones due to the different sizes of cell parameters. The quality of the samples was examined by HR-TEM and all of them presented well defined interfaces (Figure 1). Electrical characterization confirms that the conductivity can be modulated by varying the number of interfaces and thickness. Samples without CGO termination are unstable in air atmosphere due to surface carbonation, which was confirmed by XPS and HR-TEM.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Influence of lanthanum doping on the structure and transport properties of CeO2

    Get PDF
    LaxCe1-xO2-x/2 materials are oxide and/or proton conductors depending on the La-content and they are of interest for numerous electrochemical applications at high temperatures, including membranes for hydrogen separation and fuel cell electrolytes. Samples with low La-content exhibit (x0.4) crystallize with cubic fluorite type structure; while for x>0.4 the structure is still unclear. The crystal structure of these materials is still unknown, some authors reported that the materials exhibit fluorite type structure in the whole compositional range. However, another authors reported a pyrochlore type structure for x0.5. The stabilization of the fluorite or pyrochlore type structure depends mainly on the oxygen sublattice and the vacancy ordering1. In this contribution, LaxCe1-xO2-δ (0<x0.7) materials are prepared by the freeze-drying precursor method and the sintering conditions have been optimized to obtain dense ceramic samples. A complete structural characterization has been carried out by X-ray powder diffraction and scanning electron microscopy. The average structure determined by conventional XRD indicates that the materials are single fluorite compounds for x0.6. However, the local structure determined by combined electron diffraction and HRTEM is more complex. The SAED patterns reveal diffuse scatterings for x0.5 that have been associated with O-vacancy ordering, leading to a superstructure relative to a single fluorite . This finding is further confirmed by the HRTEM images in the same zone axis. Thermogravimetric and Raman analysis confirmed an increase of oxygen vacancy concentration with La-doping. The overall conductivity was determined by complex impedance spectroscopy in different atmospheres. The samples with high La-content exhibit an important proton contribution at low temperature. In addition, all samples are mixed ion-electronic conductors in hydrogen containing atmosphereUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tec
    corecore