18 research outputs found

    Lysosome (Dys)function in Atherosclerosis—A Big Weight on the Shoulders of a Small Organelle

    Get PDF
    Funding: This research was supported by the research project PTDC/MEDPAT/29395/2017, financed by national funds through the Fundação para a Ciência e Tecnologia (FCT) and by PROGRAMAS DE ATIVIDADES CONJUNTAS (PAC), Reference: No. 03/SAICT/2015. AM was supported by the CEECIND/01006/2017, funded by FCT. This manuscript was supported by the LYSOCIL project, which has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 811087.Atherosclerosis is a progressive insidious chronic disease that underlies most of the cardiovascular pathologies, including myocardial infarction and ischemic stroke. The malfunctioning of the lysosomal compartment has a central role in the etiology and pathogenesis of atherosclerosis. Lysosomes are the degradative organelles of mammalian cells and process endogenous and exogenous substrates in a very efficient manner. Dysfunction of these organelles and consequent inefficient degradation of modified low-density lipoproteins (LDL) and apoptotic cells in atherosclerotic lesions have, therefore, numerous deleterious consequences for cellular homeostasis and disease progression. Lysosome dysfunction has been mostly studied in the context of the inherited lysosomal storage disorders (LSDs). However, over the last years it has become increasingly evident that the consequences of this phenomenon are more far-reaching, also influencing the progression of multiple acquired human pathologies, such as neurodegenerative diseases, cancer, and cardiovascular diseases (CVDs). During the formation of atherosclerotic plaques, the lysosomal compartment of the various cells constituting the arterial wall is under severe stress, due to the tremendous amounts of lipoproteins being processed by these cells. The uncontrolled uptake of modified lipoproteins by arterial phagocytic cells, namely macrophages and vascular smooth muscle cells (VSMCs), is the initial step that triggers the pathogenic cascade culminating in the formation of atheroma. These cells become pathogenic “foam cells,” which are characterized by dysfunctional lipid-laden lysosomes. Here, we summarize the current knowledge regarding the origin and impact of the malfunctioning of the lysosomal compartment in plaque cells. We further analyze how the field of LSD research may contribute with some insights to the study of CVDs, particularly how therapeutic approaches that target the lysosomes in LSDs could be applied to hamper atherosclerosis progression and associated mortality.publishersversionpublishe

    Cell Senescence, Multiple Organelle Dysfunction and Atherosclerosis

    Get PDF
    Our research is supported by national funds through FCT- Fundação para a Ciência e Tecnologia and by PROGRAMAS DE ATIVIDADES CONJUNTAS (PAC) grant numbers PTDC/MED-PAT/29395/2017 and N◦3/SAICT/2015. ARAM is supported by the CEECIND/01006/2017, funded by FCT.Atherosclerosis is an age-related disorder associated with long-term exposure to cardiovascular risk factors. The asymptomatic progression of atherosclerotic plaques leads to major cardiovascular diseases (CVD), including acute myocardial infarctions or cerebral ischemic strokes in some cases. Senescence, a biological process associated with progressive structural and functional deterioration of cells, tissues and organs, is intricately linked to age-related diseases. Cell senescence involves coordinated modifications in cellular compartments and has been demonstrated to contribute to different stages of atheroma development. Senescence-based therapeutic strategies are currently being pursued to treat and prevent CVD in humans in the near-future. In addition, distinct experimental settings allowed researchers to unravel potential approaches to regulate anti-apoptotic pathways, facilitate excessive senescent cell clearance and eventually reverse atherogenesis to improve cardiovascular function. However, a deeper knowledge is required to fully understand cellular senescence, to clarify senescence and atherogenesis intertwining, allowing researchers to establish more effective treatments and to reduce the cardiovascular disorders' burden. Here, we present an objective review of the key senescence-related alterations of the major intracellular organelles and analyze the role of relevant cell types for senescence and atherogenesis. In this context, we provide an updated analysis of therapeutic approaches, including clinically relevant experiments using senolytic drugs to counteract atherosclerosis.publishersversionpublishe

    Gcase and limp2 abnormalities in the liver of niemann pick type c mice

    Get PDF
    Funding Information: This work was supported by the NWO-Building Blocks of Life: GlcCer grant to J.M.F.G.A: BBOL-2007247202. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.The lysosomal storage disease Niemann–Pick type C (NPC) is caused by impaired cholesterol efflux from lysosomes, which is accompanied by secondary lysosomal accumulation of sph-ingomyelin and glucosylceramide (GlcCer). Similar to Gaucher disease (GD), patients deficient in glucocerebrosidase (GCase) degrading GlcCer, NPC patients show an elevated glucosylsphingosine and glucosylated cholesterol. In livers of mice lacking the lysosomal cholesterol efflux transporter NPC1, we investigated the expression of established biomarkers of lipid-laden macrophages of GD patients, their GCase status, and content on the cytosol facing glucosylceramidase GBA2 and lysoso-mal integral membrane protein type B (LIMP2), a transporter of newly formed GCase to lysosomes. Livers of 80-week-old Npc1−/− mice showed a partially reduced GCase protein and enzymatic activity. In contrast, GBA2 levels tended to be reciprocally increased with the GCase deficiency. In Npc1−/− liver, increased expression of lysosomal enzymes (cathepsin D, acid ceramidase) was observed as well as increased markers of lipid-stressed macrophages (GPNMB and galectin-3). Im-munohistochemistry showed that the latter markers are expressed by lipid laden Kupffer cells. Earlier reported increase of LIMP2 in Npc1−/− liver was confirmed. Unexpectedly, immunohistochemistry showed that LIMP2 is particularly overexpressed in the hepatocytes of the Npc1−/− liver. LIMP2 in these hepatocytes seems not to only localize to (endo)lysosomes. The recent recognition that LIMP2 harbors a cholesterol channel prompts the speculation that LIMP2 in Npc1−/− hepatocytes might mediate export of cholesterol into the bile and thus protects the hepatocytes.publishersversionpublishe

    Delay of EGF-Stimulated EGFR Degradation in Myotonic Dystrophy Type 1 (DM1)

    Get PDF
    Funding Information: This research was supported by the Isabel Gemio Foundation (P18–13) and was also partially supported by the “Fondo Europeo de Desarrollo Regional” (FEDER) from the European Union. E.A.-C. was supported by a pre-doctoral fellowship of Valhondo Calaff Foundation. S.C.-C. and E.U.-C. were supported by FPU fellowships (FPU19/04435 and FPU16/00684, respectively) from the Ministerio de Ciencia, Innovación y Universidades, Spain. M.P.-B. and A.G.-B. received fellowships from the “Plan Propio de Iniciación a la Investigación, Desarrollo Tecnológico e Innovación (Universidad de Extremadura). M.N.-S. was supported by the “Ramon y Cajal” Program (RYC-2016–20883), and P.G.-S., was funded by “Juan de la Cierva Incorporación” Program (IJC2019–039229-I), Spain. S.M.S.Y.-D. was supported by the Isabel Gemio Foundation and CIBERNED (CB06/05/0041). J.M.F received research support from the Isabel Gemio Foundation and the “Instituto de Salud Carlos” III, CIBERNED (CB06/05/0041). Publisher Copyright: © 2022 by the authors.Myotonic dystrophy type 1 (DM1) is an autosomal dominant disease caused by a CTG repeat expansion in the 3′ untranslated region of the dystrophia myotonica protein kinase gene. AKT dephosphorylation and autophagy are associated with DM1. Autophagy has been widely studied in DM1, although the endocytic pathway has not. AKT has a critical role in endocytosis, and its phosphorylation is mediated by the activation of tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR). EGF-activated EGFR triggers the internalization and degradation of ligand–receptor complexes that serve as a PI3K/AKT signaling platform. Here, we used primary fibroblasts from healthy subjects and DM1 patients. DM1-derived fibroblasts showed increased autophagy flux, with enlarged endosomes and lysosomes. Thereafter, cells were stimulated with a high concentration of EGF to promote EGFR internalization and degradation. Interestingly, EGF binding to EGFR was reduced in DM1 cells and EGFR internalization was also slowed during the early steps of endocytosis. However, EGF-activated EGFR enhanced AKT and ERK1/2 phosphorylation levels in the DM1-derived fibroblasts. Therefore, there was a delay in EGF-stimulated EGFR endocytosis in DM1 cells; this alteration might be due to the decrease in the binding of EGF to EGFR, and not to a decrease in AKT phosphorylation.publishersversionpublishe

    Guidelines for the management and treatment of periodic fever syndromes Cryopyrin-associated periodic syndromes (cryopyrinopathies – CAPS)

    Get PDF
    AbstractObjectiveTo establish guidelines based on cientific evidences for the management of cryopyrin associated periodic syndromes.Description of the evidence collection methodThe Guideline was prepared from 4 clinical questions that were structured through PICO (Patient, Intervention or indicator, Comparison and Outcome), to search in key primary scientific information databases. After defining the potential studies to support the recommendations, these were graduated considering their strength of evidence and grade of recommendation.Results1215 articles were retrieved and evaluated by title and abstract; from these, 42 articles were selected to support the recommendations.Recommendations1. The diagnosis of CAPS is based on clinical history and clinical manifestations, and later confirmed by genetic study. CAPS may manifest itself in three phenotypes: FCAS (mild form), MWS (intermediate form) and CINCA (severe form). Neurological, ophthalmic, otorhinolaryngological and radiological assessments may be highly valuable in distinguishing between syndromes; 2. The genetic diagnosis with NLRP3 gene analysis must be conducted in suspected cases of CAPS, i.e., individuals presenting before 20 years of age, recurrent episodes of inflammation expressed by a mild fever and urticaria; 3. Laboratory abnormalities include leukocytosis and elevated serum levels of inflammatory proteins; and 4. Targeted therapies directed against interleukin-1 lead to rapid remission of symptoms in most patients. However, there are important limitations on the long-term safety. None of the three anti-IL-1β inhibitors prevents progression of bone lesions

    Transpiration and leaf growth of potato clones in response to soil water deficit

    Get PDF
    Potato (Solanum tuberosum ssp. Tuberosum) crop is particularly susceptible to water deficit because of its small and shallow root system. The fraction of transpirable soil water (FTSW) approach has been widely used in the evaluation of plant responses to water deficit in different crops. The FTSW 34 threshold (when stomatal closure starts) is a trait of particular interest because it is an indicator of tolerance to water deficit. The FTSW threshold for decline in transpiration and leaf growth was evaluated in a drying soil to identify potato clones tolerant to water deficit. Two greenhouse experiments were carried out in pots, with three advanced clones and the cultivar Asterix. The FTSW, transpiration and leaf growth were measured on a daily basis, during the period of soil drying. FTSW was an efficient method to separate potato clones with regard to their response to water deficit. The advancedclones SMINIA 02106-11 and SMINIA 00017-6 are more tolerant to soil water deficit than the cultivar Asterix, and the clone SMINIA 793101-3 is more tolerant only under high solar radiation

    Cathepsin D: Analysis of its potential role as an amyloid beta degrading protease

    No full text
    Proteolysis catalyzed by the major lysosomal aspartyl protease cathepsin-D (CTSD) appears to be of pivotal importance for proteostasis within the central nervous system and in neurodegeneration. Neuronal Ceroid Lipofuscinosis (NCL) type 10 is caused by a lack of CTSD leading to a defective autophagic flow and pathological accumulation of proteins. We previously demonstrated a therapeutic-relevant clearance of protein aggregates after dosing a NCL10 mouse model with recombinant human pro-cathepsin-D (proCTSD). Similar results could be achieved in cells and mice accumulating α-synuclein. Prompted by these positive effects and our in vitro findings showing that cathepsin-D can cleave the Alzheimer's Disease (AD)-causing amyloid beta peptides (Aβ), we envisaged that such a treatment with proCTSD could similarly be effective in clearance of potentially toxic Aβ species.We demonstrated that CTSD is able to cleave human Aβ1–42 by using liquid chromatography-mass spectrometry. Intracerebral dosing of proCTSD in a NCL10 (CTSD knockout) mouse model revealed uptake and processing of CTSD to its mature and active form. However, the re-addition of CTSD did not obviously affect intracellular APP processing or the generation of soluble APP and Aβ-species. ProCTSD treated HEK cells in comparison with untreated cells were found to contain comparable levels of soluble and membrane bound APP and Aβ-species. Also, the early intracranial application (P1 and P20) of proCTSD in the 5xFAD mouse model did not change Aβ pathology, plaque number and plaque composition and neuroinflammation, however we observed an increased level of Aβ1–42 in the CSF.Our data confirm proteolytic cleavage of human Aβ1–42 by CTSD but exclude a prominent role of CTSD in APP processing and Aβ degradation in our in vitro and in vivo models

    Lysosomal Storage Diseases. For Better or Worse: Adapting to Defective Lysosomal Glycosphingolipid Breakdown

    No full text
    The cellular recycling of glycosphingolipids (GSLs) is mediated by specific lysosomal glycosidases. Inherited deficiencies in these enzymes cause lysosomal storage disorders. Some of the common disorders are Gaucher disease (GD) and Fabry disease (FD) resulting from the defects in lysosomal glucocerebrosidase (GBA) degrading glucosylceramide and α‐galactosidase A (GLA) degrading globotriaosylceramide. Here, GSL accumulation in tissues slows down with age despite ongoing lysosomal turnover of endogenous and endocytosed GSLs. Biochemical adaptations might explain this phenomenon. One crucial adaptation is the deacylation of accumulating GSLs in lysosomes by acid ceramidase. The soluble bases glucosylsphingosine in GD and globotriaosylsphingosine in FD are capable of leaving lysosomes and cells. In the case of GD, a further adaptation involves the cytosol‐faced enzyme GBA2. This enzyme allows extra‐lysosomal degradation of GlcCer while possibly generating glucosylated cholesterol. The beneficial and harmful effects of these adaptations are discussed.Key concepts: Glycosphingolipids (GSLs) are membrane constituents composed of a ceramide with one or more sugars. The simplest GSL is glucosylceramide (GlcCer). Ongoing recycling of GSLs in cells includes lysosomal degradation by the sequential action of glycosidases and acid ceramidase. Deficiency of lysosomal glycosidase leads to lysosomal storage diseases caused by accumulation of the corresponding substrate in lysosomes. The most common glycosphingolipidoses are Gaucher disease (GD) and Fabry disease (FD). GD is an autosomal recessive disorder caused by deficient activity of the lysosomal enzyme acid β‐glucosidase (glucocerebrosidase; GBA) resulting in lysosomal accumulation of GlcCer. FD is an X‐linked disorder caused by deficient activity of the lysosomal enzyme α‐galactosidase A (GLA) resulting in lysosomal accumulation of globotriaosylceramide (Gb3). Accumulation of storage lipids during GBA and GLA tends to slow down with age, likely partly due to poorly appreciated biochemical adaptations. Active conversion of accumulating GlcCer in lysosomes of GBA‐deficient cells is mediated by acid ceramidase, resulting in the formation of water‐soluble glucosylsphingosine (GlcSph). Likewise, globotriaosylsphingosine (lysoGb3) is formed from accumulating in lysosomes of GLA‐deficient cells. Elevated plasma GlcSph and lysoGb3 levels can be sensitively measured LC–MS and may assist in diagnosing and monitoring of the disease and response to treatment in GD and FD patients, respectively. Increased GlcSph level in GD patients acts as an autoantigen, causing ongoing B‐cell proliferation, leading to multiple myeloma. Increased lysoGb3 level in FD patients is thought to cause damage to nociceptive neurons and podocytes, thus contributing to pain and renal failure. In GD, the cytosol‐faced enzyme β‐glucosidase GBA2 allows degradation of GlcCer outside lysosomes. Through transglycosylation, GBA2 may generate glucosylcholesterol and ceramide from GlcCer and cholesterol. The toxic effects of secondary metabolites such as glycosphingoid bases (GlcSph in GD and lysoGb3 in FD) and glucosylated metabolites (GlcChol in GD) warrant further investigations.info:eu-repo/semantics/publishedVersio

    Cholesteryl hemiazelate identified in CVD patients causes in vitro and in vivo inflammation

    Get PDF
    Oxidation of PUFAs in LDLs trapped in the arterial intima plays a critical role in atherosclerosis. Though there have been many studies on the atherogenicity of oxidized derivatives of PUFA-esters of cholesterol, the effects of cholesteryl hemiesters (ChEs), the oxidation end products of these esters, have not been studied. Through lipidomics analyses, we identified and quantified two ChE types in the plasma of CVD patients and identified four ChE types in human endarterectomy specimens. Cholesteryl hemiazelate (ChA), the ChE of azelaic acid (n-nonane-1,9-dioic acid), was the most prevalent ChE identified in both cases. Importantly, human monocytes, monocyte-derived macrophages, and neutrophils exhibit inflammatory features when exposed to subtoxic concentrations of ChA in vitro. ChA increases the secretion of proinflammatory cytokines such as interleukin-1β and interleukin-6 and modulates the surface-marker profile of monocytes and monocyte-derived macrophage. In vivo, when zebrafish larvae were fed with a ChA-enriched diet, they exhibited neutrophil and macrophage accumulation in the vasculature in a caspase 1- and cathepsin B-dependent manner. ChA also triggered lipid accumulation at the bifurcation sites of the vasculature of the zebrafish larvae and negatively impacted their life expectancy. We conclude that ChA behaves as an endogenous damage-associated molecular pattern with inflammatory and proatherogenic properties
    corecore