77 research outputs found

    A transfer function for the prediction of gas hydrate inventories in marine sediments

    Get PDF
    A simple prognostic tool for gas hydrate (GH) quantification in marine sediments is presented based on a diagenetic transport-reaction model approach. One of the most crucial factors for the application of diagenetic models is the accurate formulation of microbial degradation rates of particulate organic carbon (POC) and the coupled formation of biogenic methane. Wallmann et al. (2006) suggested a kinetic formulation considering the ageing effects of POC and accumulation of reaction products (CH4, CO2) in the pore water. This model is applied to data sets of several ODP sites in order to test its general validity. Based on a thorough parameter analysis considering a wide range of environmental conditions, the POC accumulation rate (POCar in g/m2/yr) and the thickness of the gas hydrate stability zone (GHSZ in m) were identified as the most important and independent controls for biogenic GH formation. Hence, depth-integrated GH inventories in marine sediments (GHI in g of CH4 per cm2 seafloor area) can be estimated as: GHI=a ·POCar·GHSZb ·exp(−GHSZc/POCar/d)+e with a = 0.00214, b = 1.234, c = −3.339, d = 0.3148, e = −10.265. The transfer function gives a realistic first order approximation of the minimum GH inventory in low gas flux (LGF) systems. The overall advantage of the presented function is its simplicity compared to the application of complex numerical models, because only two easily accessible parameters need to be determined

    Simulation of Dynamic Rearrangement Events in Wall-Flow Filters Applying Lattice Boltzmann Methods

    Get PDF
    Wall-flow filters are applied in the exhaust treatment of internal combustion engines for the removal of particulate matter (PM). Over time, the pressure drop inside those filters increases due to the continuously introduced solid material, which forms PM deposition layers on the filter substrate. This leads to the necessity of regenerating the filter. During such a regeneration process, fragments of the PM layers can potentially rearrange inside single filter channels. This may lead to the formation of specific deposition patterns, which affect a filter’s pressure drop, its loading capacity and the separation efficiency. The dynamic formation process can still not consistently be attributed to specific influence factors, and appropriate calculation models that enable a quantification of respective factors do not exist. In the present work, the dynamic rearrangement process during the regeneration of a wall-flow filter channel is investigated. As a direct sequel to the investigation of a static deposition layer in a previous work, the present one additionally investigates the dynamic behaviour following the detachment of individual layer fragments as well as the formation of channel plugs. The goal of this work is the extension of the resolved particle methodology used in the previous work via a discrete method to treat particle–particle and particle–wall interactions in order to evaluate the influence of the deposition layer topology, PM properties and operating conditions on dynamic rearrangement events. It can be shown that a simple mean density methodology represents a reproducible way of determining a channel plug’s extent and its average density, which agrees well with values reported in literature. The sensitivities of relevant influence factors are revealed and their impact on the rearrangement process is quantified. This work contributes to the formulation of predictions on the formation of specific deposition patterns, which impact engine performance, fuel consumption and service life of wall-flow filters

    Estimation of the global inventory of methane hydrates in marine sediments using transfer functions

    Get PDF
    The accumulation of gas hydrates in marine sediments is essentially controlled by the accumulation of particulate organic carbon (POC) which is microbially converted into methane, the thickness of the gas hydrate stability zone (GHSZ) where methane can be trapped, the sedimentation rate (SR) that controls the time that POC and the generated methane stays within the GHSZ, and the delivery of methane from deep-seated sediments by ascending pore fluids and gas into the GHSZ. Recently, Wallmann et al. (2012) presented transfer functions to predict the gas hydrate inventory in diffusion-controlled geological systems based on SR, POC and GHSZ thickness for two different scenarios: normal and full compacting sediments. We apply these functions to global data sets of bathymetry, heat flow, seafloor temperature, POC input and SR, estimating a global mass of carbon stored in marine methane hydrates from 3 to 455 Gt of carbon (GtC) depending on the sedimentation and compaction conditions. The global sediment volume of the GHSZ in continental margins is estimated to be 60–67 × 1015 m3, with a total of 7 × 1015 m3 of pore volume (available for GH accumulation). However, seepage of methane-rich fluids is known to have a pronounced effect on gas hydrate accumulation. Therefore, we carried out a set of systematic model runs with the transport-reaction code in order to derive an extended transfer function explicitly considering upward fluid advection. Using averaged fluid velocities for active margins, which were derived from mass balance considerations, this extended transfer function predicts the enhanced gas hydrate accumulation along the continental margins worldwide. Different scenarios were investigated resulting in a global mass of sub-seafloor gas hydrates of ~ 550 GtC. Overall, our systematic approach allows to clearly and quantitatively distinguish between the effect of biogenic methane generation from POC and fluid advection on the accumulation of gas hydrate, and hence, provides a simple prognostic tool for the estimation of large-scale and global gas hydrate inventories in marine sediments

    Optimization of a Micromixer with Automatic Differentiation

    Get PDF
    As micromixers offer the cheap and simple mixing of fluids and suspensions, they have become a key device in microfluidics. Their mixing performance can be significantly increased by periodically varying the inlet pressure, which leads to a non-static flow and improved mixing process. In this work, a micromixer with a T-junction and a meandering channel is considered. A periodic pulse function for the inlet pressure is numerically optimized with regard to frequency, amplitude and shape. Thereunto, fluid flow and adsorptive concentration are simulated three-dimensionally with a lattice Boltzmann method (LBM) in OpenLB. Its implementation is then combined with forward automatic differentiation (AD), which allows for the generic application of fast gradient-based optimization schemes. The mixing quality is shown to be increased by 21.4% in comparison to the static, passive regime. Methodically, the results confirm the suitability of the combination of LBM and AD to solve process-scale optimization problems and the improved accuracy of AD over difference quotient approaches in this context

    Transcription-driven chromatin repression of Intragenic transcription start sites

    Get PDF
    <div><p>Progression of RNA polymerase II (RNAPII) transcription relies on the appropriately positioned activities of elongation factors. The resulting profile of factors and chromatin signatures along transcription units provides a “positional information system” for transcribing RNAPII. Here, we investigate a chromatin-based mechanism that suppresses intragenic initiation of RNAPII transcription. We demonstrate that RNAPII transcription across gene promoters represses their function in plants. This repression is characterized by reduced promoter-specific molecular signatures and increased molecular signatures associated with RNAPII elongation. The conserved FACT histone chaperone complex is required for this repression mechanism. Genome-wide Transcription Start Site (TSS) mapping reveals thousands of discrete intragenic TSS positions in <i>fact</i> mutants, including downstream promoters that initiate alternative transcript isoforms. We find that histone H3 lysine 4 mono-methylation (H3K4me1), an <i>Arabidopsis</i> RNAPII elongation signature, is enriched at FACT-repressed intragenic TSSs. Our analyses suggest that FACT is required to repress intragenic TSSs at positions that are in part characterized by elevated H3K4me1 levels. In sum, conserved and plant-specific chromatin features correlate with the co-transcriptional repression of intragenic TSSs. Our insights into TSS repression by RNAPII transcription promise to inform the regulation of alternative transcript isoforms and the characterization of gene regulation through the act of pervasive transcription across eukaryotic genomes.</p></div

    Spectrum Analysis of Bright Kepler Gamma Doradus Candidate Stars

    Get PDF
    Ground-based spectroscopic follow-up observations of the pulsating stars observed by the Kepler satellite mission are needed for their asteroseismic modelling. We aim to derive the fundamental parameters for a sample of 26 Gamma Doradus candidate stars observed by the Kepler satellite mission to accomplish one of the required preconditions for their asteroseismic modelling and to compare our results with the types of pulsators expected from the existing light curve analysis. We use the spectrum synthesis method to derive the fundamental parameters like Teff, logg, [M/H], and vsini from newly obtained spectra and compute the spectral energy distribution from literature photometry to get an independent measure of Teff. We find that most of the derived Teff values agree with the values given in the Kepler Input Catalogue. According to their positions in the HR-diagram three stars are expected Gamma Dor stars, ten stars are expected Delta Sct stars, and seven stars are possibly Delta Sct stars at the hot border of the instability strip. Four stars in our sample are found to be spectroscopic binary candidates and four stars have very low metallicity where two show about solar C abundance. Six of the 10 stars located in the Delta Sct instability region of the HR-diagram show both Delta Sct and Gamma Dor-type oscillations in their light curves implying that Gamma Dor-like oscillations are much more common among the Delta Sct stars than predicted by theory. Moreover, seven stars showing periods in the Delta Sct and the Delta Sct-Gamma Dor range in their light curves are located in the HR-diagram left of the blue edge of the theoretical Delta Sct instability strip. The consistency of these findings with recent investigations based on high-quality Kepler data implies the need for a revision of the theoretical Gamma Dor and Delta Sct instability strips.Comment: 10 pages, 3 figures, 7 tables; accepted for publication in MNRA

    Quantum technologies in space

    Get PDF
    Recently, the European Commission supported by many European countries has announced large investments towards the commercialization of quantum technology (QT) to address and mitigate some of the biggest challenges facing today’s digital era – e.g. secure communication and computing power. For more than two decades the QT community has been working on the development of QTs, which promise landmark breakthroughs leading to commercialization in various areas. The ambitious goals of the QT community and expectations of EU authorities cannot be met solely by individual initiatives of single countries, and therefore, require a combined European effort of large and unprecedented dimensions comparable only to the Galileo or Copernicus programs. Strong international competition calls for a coordinated European effort towards the development of QT in and for space, including research and development of technology in the areas of communication and sensing. Here, we aim at summarizing the state of the art in the development of quantum technologies which have an impact in the field of space applications. Our goal is to outline a complete framework for the design, development, implementation, and exploitation of quantum technology in space. © 2021, The Author(s)
    • 

    corecore