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Abstract: Rearrangement events in wall-flow filters lead to the formation of specific deposition
patterns, which affect a filter’s pressure drop, its loading capacity and the separation efficiency. A
universal and consistent formulation of probable causes and influence factors does not exist and
appropriate calculation models that enable a quantification of respective influence factors are missing.
In this work, a previously developed lattice Boltzmann method, which has been used with inflow
velocities of up to 2 m s−1, is applied to elevated velocities of up to 60 m s−1. The particle-free flow,
a single layer fragment and a deposition layer during break-up are investigated as three different
scenarios. One goal of this work is a comprehensive quantification of the stability and accuracy of
both particle-free and particle-including flows, considering static, impermeable deposition-layer
fragments. A second goal is the determination of the hydrodynamic surface forces and the deduction
of the local detachment likelihood of individual layer fragments. Satisfactory stability and accuracy
can be shown for fluid velocity, fluid pressure and the hydrodynamic forces. When considering
layer fragments, the parameter domain turns out to be limited to inflow velocities of 28 m s−1. It is
shown that fragment detachment rather occurs consecutively and regions of no possible detachment
are identified. The work contributes to an understanding of rearrangement events and respective
deposition pattern predictions and enables potential optimizations in engine performance, fuel
consumption and the service life of wall-flow filters.

Keywords: wall-flow filter; lattice Boltzmann methods; porous media; resolved particle simulations;
homogenized lattice Boltzmann method

1. Introduction

Wall-flow filters are one of the key components in modern exhaust treatment sys-
tems of internal combustion engines, enabling compliance with present emission limits [1].
By means of oppositely arranged inlet and outlet channels, such filters guide the introduced
exhaust flow through porous walls, which separate the contained particulate matter (PM),
with efficiencies up to 99% [2]. Over time, PM loading increases in the inflow channels,
in which continuous deposition layers are formed on the porous wall surfaces, leading
to an increase in pressure drop and resulting degradation in engine performance [3–5].
As the introduced PM mostly consists of combustible soot and small amounts of inorganic
non-combustible ash, a filter’s regeneration is achieved by continuously or periodically
oxidizing its reactive components. Over long-term operation, this leads to an accumulation
of ash, which forms agglomerates and affects the deposition layer composition. During
regeneration, the resulting inhomogeneities can then lead to a break-up of the continu-
ous layer into individual fragments, which can potentially detach from the filter surface
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and relocate inside a channel’s domain [3]. As a result, specific deposition patterns are
formed, which affect a channel’s pressure drop contribution, its loading capacity and the
separation efficiency.

Probable causes and influence factors leading to the individual patterns have been
determined in various scientific works [4,6–8]; however, a universal and consistent formula-
tion without partially contradicting statements does not yet exist. Appropriate calculation
models that enable a quantification of relevant influence factors are missing completely.
This, however, impedes respective predictions on the formation of specific deposition
patterns, which eventually affect engine performance, fuel consumption and the service
life of wall-flow filters.

In Hafen et al. [9], the authors of the present manuscript demonstrated the applicability
of surface-resolved particle simulations on the investigation of particulate matter structure
detachment using lattice Boltzmann methods (LBM). Here, they presented a holistic LBM
approach, which can be employed both for the simulation of the movement of resolved
particles and the flow through porous media, while being based on the same numerical
method. In the particle-free case, the presented model could be shown to exhibit super-
linear grid convergence for an inflow velocity of ūin = 2.0 m s−1 and good agreement with
a reference solution, which had previously been validated thoroughly by experimental
data [10]. Additionally, the approach could also be shown to enable the simulation of a
transient detachment and transport process of surface-resolved structures governed by
hydrodynamic forces. This work also includes a literature review addressing relevant
findings on the deposition pattern formation, general numeric approaches to wall-flow
filter modelling and LBM-related research regarding flow through porous media, as well as
surface-resolved particle simulations.

In Hafen et al. [11], a holistic LBM approach was then used to investigate the de-
tachment, acceleration and deceleration of individual particulate structures in order to
derive clear predictions on the formation of specific deposition patterns. A pressure drop
comparison with experimental investigations conducted on the experiment rig described
in Thieringer et al. [12] led to the determination of a physically sensible substrate per-
meability of K = 4.3× 10−12 m2, which is adopted in the present work as well. General
transport characteristics were determined, identifying several key parameters utilizable for
a standardized comparison of different simulation and experiment runs. Eventually, the
particle structure’s pneumatic transport through the channel was investigated for different
starting positions, substrate permeabilities, particle densities and inflow velocities up to
ūin = 2.0 m s−1.

In both works, the hydrodynamic forces acting on individual particulate structures
were shown to be responsible for their detachment likelihood and transport characteristics
under different operating and geometric conditions. While the described works, therefore,
serve as a demonstration of the applicability of the simulation approach, the considered
inflow velocities up to ūin = 2.0 m s−1 only cover a small portion of the real world ranges
that include velocities up to ūin = 80 m s−1 [6]. The main focus of the present work is,
therefore, to apply the developed LBM approach to an extended velocity range that covers
as much as possible of the physically relevant domain. For a given discretization, however,
elevated physical fluid velocities lead to the occurrence of higher LBM-specific lattice
velocities, which inevitably drive a simulation closer to the method’s inherent stability
limit [13]. A discretization refinement increases the distance to the stability limit; however,
this comes with the price of drastically increasing the amount of computational cells to
be considered for three-dimensional simulations [11]. This, in turn, faces a limit due to
the available computational resources, leading to the necessity of running a simulation
with elevated fluid velocities in the vicinity of the stability limit. This has two implications:
Firstly, the results’ accuracy degrades [13] for both the individual quantities of interest and
overall mass conservation. Additionally, the anisotropy of the flow (e.g., main flow direc-
tion vs. wall-penetration direction) leads to different magnitudes of differently oriented
hydrodynamic force and torque contributions and respective different implications for their
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accuracy. Secondly, local velocity peaks are more likely to break the stability locally, usually
causing the simulation to diverge. The occurrence of the peaks is directly dependent on
both the geometry of a wall-flow channel and specific deposition patters. As a consequence,
a generic LBM discussion does not suffice and a wall-flow specific stability and accuracy
examination is indispensable for the consideration of the elevated velocity range in the
simulation approach.

One goal of the present work is, therefore, to provide a comprehensive quantification
of the stability and accuracy of both particle-free and particle-including flow, considering
static, impermeable PM layer fragments attached to the porous substrate’s surface. For
any future study intended to investigate three-dimensional flow in wall-flow filters with
elevated velocities by means of the LBM, this work can serve as a foundation, providing
insight into numerical borderline cases that need to be considered. A second goal is the
determination of the hydrodynamic forces acting on the particulate structures and the
deduction of the local detachment likelihood of individual layer fragments, including their
dependency on local flow conditions and the layer’s fragmentation. As the formation
of specific deposition patterns is dominated by rearrangement events that require the
occurrence of the detachment of such fragments, the present work represents a contribution
to respective deposition pattern predictions.

The following sections provide an introduction to the mathematical modelling and
relevant numerical methods (c.f. Section 2), a description of examined simulation cases
for three specific scenarios (c.f. Section 3), and a discussion and interpretation of the study
results (c.f. Section 4). A conclusion in Section 5 provides a summary of all the relevant
findings and the resulting implications for wall-flow filter applications.

2. Mathematical Modelling and Numerical Methods

The present section briefly lays out the theoretical foundation for the simulation
approach used in this work. This includes a description of the LBM principles in Section 2.1,
an explanation of porous media and surface-resolved particle modelling (c.f. Section 2.3 and
Section 2.2), and the quantification of errors and convergence behaviour (c.f. Section 2.4). A
more detailed description on most aspects can, however, be found in Hafen et al. [9].

In this work, the evolution of conserved fluid quantities is described with the incom-
pressible Navier–Stokes equations (NSE) [14]. With these, a fluid’s velocity u(x, t) and
the pressure p(x, t) at a three-dimensional position x in time t can be retrieved inside a
specified domain. The fluid flow inside the porous substrate walls is modelled according
to Darcy’s law [15].

2.1. Lattice Boltzmann Method

One way of discretizing the continuous Navier–Stokes equation (NSE) is provided by
the LBM in the form of a mesoscopic description of gas dynamics. Instead of individual
molecules at the microscale, it considers a particle distribution function f and can be shown
to lead to solutions of the equations of fluid dynamics on a macroscopic scale [13]. In this
way, the LBM can be used as an alternative to conventional fluid methods, such as the finite
volume method (FVM).

The discretization of the fluid domain is achieved by using a uniformly spaced voxel
mesh with spacing δx. At time t and position x of the resulting lattice, the velocity space
is discretized with lattice velocities ci, leading to a set of corresponding discrete-velocity
distribution functions fi. While the size of these sets can be chosen in various ways, in the
present work, q = 19 discrete velocities covering three spacial dimensions are considered.
The lattice Boltzmann equation (LBE) describes the discrete-velocity distribution function
fi after a discrete time step δt at a neighbouring node, where a collision operator Ωi
accounts for the mesoscopic contribution of molecular collisions on the microscale. All
lattice-related quantities can then be described in dimensionless lattice units by providing
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some characteristic quantities inherent to the physics under study [13]. This allows for the
commonly adopted choice of δx = δt = 1, leading to the LBE in the form

fi(x + ci, t + 1) = fi(x, t) + Ωi(x, t). (1)

While the collisions can be modelled in various ways [16–18], in the present work, we
adopt the choice of the previous works [9,11,19] and use a Bhatnagar–Gross–Krook (BGK)
collision operator [16] with a lattice relaxation time of τ = 0.51

Ωi(x, t) = − 1
τ

(
fi(x, t)− f (eq)

i (x, t)
)

. (2)

It describes the relaxation of the discrete distribution function fi towards its equilibrium
f (eq)
i at a single fluid node

f (eq)
i (u, ρ) = wiρ

[
1 +

(
ci · u

c2
s

+
(ci · u)2

2c4
s

+
u2

2c2
s

)]
(3)

with weights wi and a lattice speed of sound of cs = 1/
√

3 inherent to the velocity set
chosen in this work [13]. With (2) and (3), a link to local macroscopic fluid quantities can be
established: According to the Chapman–Enskog analysis [20], the macroscopic kinematic
viscosity can be shown to depend on the relaxation time as

ν = c2
s

(
τ − 1

2

)
. (4)

The equilibrium function f (eq)
i in (3), in turn, depends on the macroscopic fluid density ρ

and the macroscopic fluid velocity u, which can be retrieved via the zeroth- and first-order
moments of the discrete distribution function

ρ =
q−1

∑
i=0

fi and ρu =
q−1

∑
i=0

ci fi. (5)

With the lattice speed of sound cs, the density ρ can be related to the pressure p at lattice
scale via the isothermal equation of state

p = c2
s ρ. (6)

One of the key features of the LBM is the possibility of splitting (1) into a purely local
collision and a subsequent streaming step. This enables an efficient parallelization strategy,
which is realized in the open source software OpenLB [21], used in the present work.

2.2. Porous Media Modelling

Within the LBM, the momentum loss that a fluid experiences when passing through a
porous medium according to Darcy’s law can be accounted for by means of an effective
velocity [22]. The relaxation time τ, the kinematic fluid viscosity ν and the medium’s
permeability K can be expressed in the form of a confined permeability d ∈ [0, 1] [9] as they
stay constant throughout a simulation. This leads to

uef f (x, t) = du(x, t) with d = 1− τ
ν

K
. (7)

2.3. Surface-Resolved Particle Simulations

The homogenized lattice Boltzmann method (HLBM) [23–25] represents a generaliza-
tion of (7) to surface-resolved particles by considering moving porous media. By associating
a local confined permeability d(x, t) with a local weighting factor B(x, t) ∈ [0, 1] as a cell
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saturation, differentiating between sole liquid (B = 1), sole solid (B = 0) and mixed
(0 < B < 1) contributions at every node with position x, the approach represents a specific
form of the partially saturated method (PSM) [26–28]. In order to avoid fluctuations, a
smooth transition layer of width ε is used symmetrically at the boundary of a single particle
with index k. The weighting factor in this layer can, thus, be described with the particle’s
centre of mass Xk(t) and a given point ~x on an outward-facing normal of the surface via

B(~x, t) = cos2
( π

2ε
(‖Xk(t)−~x‖2)

)
. (8)

The factor is then used to determine a weighted average of the fluid velocity u and the solid
particle velocity uS at a single node

uef f (x, t) = B(x, t)u(x, t) + (1− B(x, t))uS(x, t), (9)

which then enters the LBE. While the approach enables the simulation of dynamic par-
ticle movement [9,11,19,23–25,29], the consideration of immobile particles (uS = 0) in
the present work simply reduces (9) to (7). More details on the particle’s shape repre-
sentation providing the respective normal and the HLBM’s derivation can be found in
Trunk et al. [24,25].

While the described methodology enables the modelling of the particle’s influence on the
fluid field, the back coupling is achieved by employing a momentum exchange approach at a
particle’s surface. Analogously to the previous works [9,11,19], the one originally proposed by
Wen et al. [30], but extended for smooth interfaces by Trunk et al. [24], is used in the present
work. The force contribution of every node xb in the smooth boundary transition area of a
single particle k can be retrieved via

Fk(xb, t) =
q−1

∑
i=0

[
(ci − uS(t)) fi(x̂b, t + 1)− (cī − uS(t)) f ī(xb, t + 1)

]
(10)

by calculating the differences between the discrete velocities ci and the particle’s solid
velocity uS. The next node in the direction of i is denoted x̂b. Index ī denotes the opposite
direction of it. With it, the force Fk and torque Tk acting on a particle’s centre of mass Xk
can then be retrieved by summing the individual force contributions over all boundary
nodes xb via

Fk(t) = ∑
xb

Fk(xb, t) and Tk(t) = ∑
xb

(xb − Xk(t))Fk(xb, t). (11)

2.4. Quantification of Errors and Convergence

In order to assess a simulation’s transient convergence behaviour, a respective criterion
is defined as the standard deviation σ of a quantity χ being smaller than a predefined
residuum r multiplied by the average χ̄ over the last T time steps

σ(χ) =

√√√√ 1
T + 1

T

∑
t=1

(χt − χ̄)2 < rχ̄. (12)

For the convergence evaluation of a particle’s surface force, Fk or Tk from (11) can be
used directly as quantity χ. Convergence of the fluid’s velocity and pressure, are, how-
ever, evaluated via the kinetic energy and the lattice density averaged by the total cell
number M

χt(u) =
1
M

M

∑
m=1

(
1
2
||u||2

)
m

and χt(ρ) =
1
M

M

∑
m=1

ρm (13)

right after being calculated via the moments according to (5).
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The influence of a discretization refinement is assessed by evaluating the grid con-
vergence, where the error errL2 based on the L2 norm is used as an error criterion for a
quantity χ at a given resolution N

errL2(χ) =

√√√√∑M
m=1

(
χref

m − χm
)2

∑M
m=1

(
χref

m
)2 . (14)

3. Application to a Wall-Flow Filter

In this work, the simulation setup of a single wall-flow channel, as described in the
previous works [9,11,19], is adopted and shown in Figure 1.

24 mm

xy
z

y

z

Figure 1. Channel model, including one central inflow channel and fractions of surrounding inflow
and outflow channels. Dark yellow structures represent porous filter substrate, brown structures
solid walls. Red colouring indicates inflow sections, blue colouring indicates outflow sections.

It consists of a porous structure with a substrate permeability of K = 4.3× 10−12 m2

and a wall thickness of lw = 0.4 mm, which separates a central inflow channel, four
additional quarter-sized inlet channels and four half-sized outflow channels. The channels
have a width of ly = 1.6 mm, which serves as the reference length for the spatial resolution
N, defined as the number of cells per channel width. A scaled channel length of lx,s =
24 mm is used, which accounts for a fifth of a real world representative of lx = 120 mm. This
scaling leads to the great reduction in computational demand that enables the extensive
studies in the present work in the first place, while ensuring similar flow characteristics,
which is shown in Hafen et al. [11]. It should be noted, however, that, for a given flux, a
length reduction leads to a higher wall throughput, which results in an increased overall
pressure drop, impeding a direct comparison with experimental results. The temperature
in a wall-flow filter can vary significantly both on average and locally depending on the
operating conditions [1]. As temperature effects, however, are not part of the present work’s
scope, ambient conditions are assumed for the whole channel domain.

The model’s symmetry enables the application of periodic boundary conditions on
the four surrounding sides, which let it serve as a representation of a real wall-flow filter
comprised of hundreds of individual channels. A constant velocity at the inlets and
a constant pressure at the outlets is imposed using Dirichlet boundary conditions [14].
Solid walls at the channel end caps on both sides are modelled with a no-slip condition.
The LBM realization of the latter is performed with a simple bounce-back condition [31],
and regularized local boundary conditions [32] are used at the outlet. As the studies
in the previous works suffered from severe stability issues for inflow velocities above
ūin = 2.0 m s−1, the local boundary condition at the inflow is exchanged for an interpolated
one [33], which has been found to generally yield more stable results.

Three different scenarios are investigated with dedicated purposes for each in the
present work:
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1. Particle-free flow
2. Single layer fragment
3. Deposition layer during break-up

First, the particle-free flow in a clean channel is investigated in order to define and
examine the parameter domain that represents a necessary stability criterion for the wall-
flow model under study. In the second scenario, a single layer fragment , attached to the
porous wall’s substrate, is considered. For this, the parameter domain is re-evaluated,
this time including the individual components of the hydrodynamic force acting on the
fragment’s surface. The third scenario represents a deposition layer during break-up. With it,
local effects on the fluid field and the acting forces are investigated for different situations
along the channel. The spatial distribution of hydrodynamic forces is evaluated in order to
derive predictions on the detachment likelihood of individual layer fragments and their
mutual influence. Independent of the scenario, all simulations are run until either reaching
the convergence criteria for the characteristic quantities of interest, diverging or exceeding a
defined maximum simulation time when fluctuations emerge. The respective residuals for
the average kinetic energy and the average lattice density of ru = 10−7 and rρ = 10−6 are
adopted from the previous works [9,11,19]. For particle-related scenarios, the convergence
is defined as reaching convergence for both fluid quantities and the normal component of
the hydrodynamic force additionally, for which the residuum is set to rF = 10−7.

3.1. Particle-Free Flow

In order to investigate the stability and accuracy of the particle-free flow, the wall-flow
model including the specified set of boundary conditions and LBM collision dynamics is
used for simulations, considering filtration relevant inflow velocities of ūin = 2 m s−1 to
60 m s−1. Spatial resolutions between N = 32 and 128 are considered, which are defined as
the number of cells per channel width ly. In an attempt to derive clear predictions for an
inflow velocity threshold, the macroscopic quantity ūin is related to its LBM specific lattice
counterpart ūin,L via

ūin = ūin,Lcu. (15)

The respective conversion factors for velocity, position and time

cu =
cx

ct
with cx =

Lchar
N

and ct = (τ − 0.5)c2
s,L

1
ν

(
Lchar

N

)2
(16)

result from the non-dimensionalization approach, commonly employed for the relation
between macroscopic and lattice quantities [13].

3.2. Single Deposition Layer Fragment

The investigation of a single deposited PM layer fragment allows for the isolated
evaluation of the accuracy and velocity dependency of relevant surface forces. While such
a fragment only has a minor effect on the global fluid field, it represents an obstacle in
the flow that can lead to locally increased velocities. These may, in turn, cause divergence
for smaller inflow velocities with respect to the particle-free case. A separate stability
evaluation is therefore inevitable. Additionally, it should be considered that the channel’s
base resolution of N = 16 has been chosen in such a way that a constant ratio between
channel width and the thickness of the porous walls can be ensured, while maintaining
complete symmetry of the model for multiples of the base resolution [9]. Fragments of
the deposition layer, however, are subject to stepwise occurring anisotropic discretization
effects of the particle surface, potentially leading to fluctuations in the grid convergence of
the force components. Therefore, resolutions up to N = 176 are considered to, nevertheless,
provide a representative data basis.

Analogously to Hafen et al. [11], a single fragment is placed flush on the substrate’s
surface. The structure is represented by a cubical disk with an edge ratio of 2× 2× 1 and a
base size of dz = 170 µm. At this point, it should be reiterated that, regarding the employed
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momentum exchange approach, the substrate wall is not considered solid. It is rather part
of the global fluid field with a decreased permeability according to (7). This ensures that all
fluid nodes necessary to prevent failure of the momentum exchange approach are provided.
The channel model with a single PM layer fragment is shown in Figure 2.

Figure 2. Channel model featuring a single PM layer fragment in gray. Dark yellow structures
represent porous filter substrate.

In Hafen et al. [11], it could be deduced that the normal forces acting on a fragment’s
surface cannot contribute much to its detachment. Tangential forces were, in turn, shown
to be larger by at least a factor of four in every considered case. This led to the conclusion
that, for equally shaped fragments, a lift-off can only be achieved by a rotational movement
over the fragment’s back-side edge. In order to enhance the modelling of this process,
a rotation-induced normal force FN,rot is additionally considered in the present work. All
relevant forces are outlined in Figure 3.

FT
FN

FN,rot Ty

x

z

y

Figure 3. Sketch of single PM layer fragment and considered hydrodynamic forces. Tangential
contributions red, normal contributions blue. Torque around y-axis at eccentric contact line.

The standard normal and tangential force FN and FT are retrieved as components of
the force Fk that results from summing the individual contributions of the momentum
exchange approach at all surface boundary nodes xb according to (11). The calculation
of the torque Tk, however, additionally requires the specification of a centre of rotation,
usually represented by a particle’s centre of mass Xk. Using the actual contact line assumed
for a rotational detachment (c.f. Figure 3) as the centre of rotation instead, the torque Ty
can be calculated directly at this position with the momentum exchange approach. Its
contribution to a normal directed detachment can then be modelled via the rotation-induced
normal force FN,rot, which simply results from dividing the torque Ty by half of the fragment’s
x-dimension as the rotational lever.

3.3. Deposition Layer during Break-Up

As a final scenario, a deposition layer during break-up due to the oxidization of the
majority of its soot content [3] is investigated. Analogously to Hafen et al. [9], the layer
fragments are modelled as a field of identical cubic discs that cover the porous walls
inside an inflow channel. For these, the same characteristics as described in the single
particle scenario are assumed. As a base configuration, a uniform field of 3× 40 fragments
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is considered on each of the four porous walls. The channel model with a uniformly
fragmented PM layer is shown in Figure 4.

Figure 4. Channel model with uniformly fragmented PM layer in gray. Dark yellow structures
represent porous filter substrate.

In order to additionally investigate the effect of the filter loading, non-uniform oxidiza-
tion kinetics and the temporal evolution of the break-up process, four modifications are
considered: By varying the layer height, the amount and predominant deposition location
of introduced PM can be accounted for. In this context, the layer height is either varied
uniformly or by assuming a predefined transition region, as laid out in Figure 5.

(a) uniform (b) increasing
Figure 5. Channel model with modified PM layer height.

While a uniform variation of the layer height in Figure 5a is supposed to represent
a simple approach to account for the duration of loading and the PM concentration, an
initially increasing layer height in Figure 5b resembles layer characteristics reported in the
literature [34,35]. For the latter, a PM layer with increasing height over a relative channel
length of xrel in the channel’s front section is considered.

With a modification of the substrate coverage, the temporal evolution during regener-
ation can be modelled by accounting for local differences in the progress of soot oxidization
or by regarding an advanced point in time when some detachment has already occurred.
This is realized by considering non-uniform layer fragmentation and partial detachment,
as shown in Figure 6.

(a) non-uniform layer fragmentation (b) partial detachment
Figure 6. Channel model with modified substrate coverage.
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The non-uniform layer fragmentation in Figure 6a features an increasing substrate
coverage, beginning from a relative fragment size of dxy,rel to the one assumed in the
base configuration. In order to evaluate the impact, each layer configuration is compared
against its inverted counterpart, which, respectively, features a decreasing coverage, end-
ing with the relative fragment size at the channel’s back. For the partial detachment in
Figure 6b, layer structures with multiple rows removed over a relative channel length xrel
are considered.

4. Results and Discussion

In the following, the simulation results will be presented and discussed for all three
scenarios described in Sections 3.1–3.3. While resolutions up to N = 176 are considered,
flow-field visualizations are generally extracted from N = 96 data sets due to much smaller
memory consumption.

4.1. Particle-Free Flow

The particle-free flow is investigated regarding its transient convergence behaviour of
the fluid pressure and velocity (c.f. Section 4.1.1), the resulting flow field (c.f. Section 4.1.2)
and the grid convergence as a measure of accuracy (c.f. Section 4.1.3).

4.1.1. Transient Convergence Behaviour

In order to determine the necessary stability domain, simulations with different com-
binations of average inflow velocity ūin and resolution N are run until completion (c.f.
Section 3). The actual value of each convergence quantity is then evaluated, considering
three possible states: convergence is assumed if the value has passed its predefined residuum.
Undefined values due to a division by zero are counted as diverged. A completion triggered
by the specified maximum simulation time of tmax = 0.1 s, is considered a timeout, which
can be caused by both continuously fluctuating quantities or a very slow convergence
behaviour, rendering the simulation unfeasible. The resulting stability map is shown in
Figure 7. Generic LBM limits according to (15) assuming relevant lattice velocities are
included as well. The resulting stability map is shown in Figure 7.

0

20

40

60

32 48 64 80 96 112 128

N

ū i
n

in
m

s−
1

Pressure:
converged diverged
time out

Velocity:
converged diverged
time out

ūin,L :
0.1 0.2
0.3 0.4

ūin,L (empirical):
0.14

Figure 7. Stability map for pressure and velocity convergence in particle-free flow. Contour lines
show stability-relevant and empirically determined velocities at lattice scale. Background colouring
indicates distance to theoretical LBM stability limits (green to red).

The first thing to note is that pressure and velocity exhibit synchronous convergence
behaviour. For a resolution of N = 32 cells per channel diameter, no convergence can be
achieved within the considered duration. With a resolution of N = 48, inflow velocities
up to ūin = 20 m s−1 can be realized. Increasing resolutions, then, enable convergence for
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higher inflow velocities as well, reaching up to ūin = 52 m s−1 at N = 128. It becomes
apparent that the resulting stability threshold follows a linear course with a slope that fits
well between those of the contour lines for ūin,L = 0.1 and 0.2. The considered wall-flow
model can, accordingly, generally be assumed to be capable of handling inflow velocities
that lead to an average lattice velocity smaller than ūin,L,max ≈ 0.14. Taking (16) into account,
this allows the formulation of a resolution-dependent maximum inflow velocity via

ūin,max(N) = AN with A = ūin,L,max
cu

N
= 0.14

ν

(τ − 0.5)c2
s,LLchar

= 0.415 (17)

4.1.2. Flow Field

The resulting flow field for an inflow velocity of ūin = 20.0 m s−1 and a resolution of
N = 96 is shown in Figure 8.

24 mm

xy
z

0.0 8.0 16.0 24.0 32.0 40.0

|u| in m s−1

Figure 8. Particle-free flow with an inflow velocity of ūin = 20.0 m s−1 and a resolution of N = 96.
Dark yellow structures represent porous filter substrate, brown structures solid walls. Streamlines
exhibit local flow direction. Colour scale indicates local velocity magnitude.

The channel model from Figure 1 shows coloured streamlines according to the local
flow direction and magnitude. Starting with the prescribed inflow velocity, the five in-
let channels exhibit a decreasing velocity magnitude and streamline density along their
length. The outflow channels, in turn, show a continuous magnitude and density increase,
eventually forming a developed channel profile at the outflow. The parabolically shaped
profile solely results from the momentum loss in the enclosing porous walls, as no specific
modelling of friction is considered. The resulting presence of elevated velocities of up to
|u| = 32.8 m s−1 drives the simulation closer to the stability limit, proving the necessity for
a model-specific stability discussion.

The axial fluid velocity and the pressure averaged at discrete locations over the inflow
and outflow channels’ cross-sections ūx and p̄, are shown in Figure 9 for different inflow
velocities. In order to include inflow velocities up to ūin = 40.0 m s−1, a resolution of
N = 128 is considered here. Due to their location inside the solid wall, the last position in
the inflow channel (x = 24 mm) and the first one in the outflow channel (x = 0 mm) do not
produce any fluid information.
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Figure 9. Velocity profiles ūx(x) and pressure profiles p̄(x) in inlet channel domain Cin and outlet
channel domain Cout with a resolution of N = 128.

The velocity ūx in the inflow channel domain Cin transitions from the imposed one
at the inlet ūin to zero at the channel end in the form of a distinctive curve for all inflow
velocities considered. The fluid passing through the porous filter walls then accumulates in
the outflow channel domain Cout, which exhibits the opposite behaviour accordingly. For
velocities in the close vicinity of the stability limit, mass conservation degrades, leading to a
difference between the resulting average axial fluid velocity at the outlets and the imposed
one at the inlets. The pressure profile of the inlet channel also exhibits a distinctive form at
a pressure level resulting from the momentum loss due to the porous walls between the
channels. Near the inflow channel’s back wall, the pressure reaches its maximum value.
The average pressure in the outflow channel decreases continuously with a decreasing slope.
In this way, the pressure difference between the inflow and outflow channel continuously
increases over the channel length.

4.1.3. Grid Convergence

The final values of the average kinetic energy Ēkin and average lattice density ρ̄, as
representatives of the velocity and pressure convergence, are then used to calculate the
respective errL2(χ) according to (14), with the highest resolution of N = 128 as the reference
solution χref. The grid convergence for four different inflow velocities is shown in Figure 10.

Both quantities can be shown to exhibit a quadratic or super-quadratic experimental
order of convergence (EOC) over the considered resolution range. The velocity convergence,
however, features a relatively large error level, which is nearly identical for all inflow
velocities. The pressure convergence, in turn, exhibits a smaller error level, which increases
significantly for greater inflow velocities. Based on this, it can be assumed that the wall-
flow model including the porosity approach is consistent with respect to the chosen grid
resolution and is generally able to recover the flow for velocities up to ūin = 40 m s−1.
Due to the in-part high error level, however, the highest resolution feasible should always
be used. From the average density’s error, it can additionally be deduced that mass
conservation might depend slightly on the inflow velocity.
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Figure 10. Error errL2 of final values of average kinetic energy and average lattice density for different
inflow velocities ūin. Reference solution χref at N = 128. Quadratic and linear EOC as guidelines.

4.2. Single Deposition Layer Fragment

Analogously to the particle-free flow, the transient convergence behaviour (c.f.
Section 4.2.1), the resulting flow field (c.f. Section 4.2.2) and the grid convergence (c.f.
Section 4.2.3) are investigated for a single layer fragment attached to the porous wall’s
substrate.

4.2.1. Transient Convergence Behaviour

The final state of the transient convergence behaviour is evaluated for different inflow
velocities ūin and resolutions up to N = 176. As laid out in Section 3, the normal component
of the force acting on a fragment’s surface is used additionally as a third convergence
quantity. The resulting stability map is shown in Figure 11.
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Figure 11. Stability map for pressure, velocity and force convergence in flow with single layer
fragment. Contour lines show stability-relevant velocities at lattice scale. Background colouring
indicates distance to theoretic LBM stability limit (green to red).

For resolutions up to N = 64, the same convergence threshold can be observed
for the flow as in the particle-free scenario. Larger resolutions, however, do not enable
the flow convergence for inflow velocities greater than ūin = 26 m s−1 due to persisting
fluctuations in the fluid field. These can be reasoned rather to represent a physically correct
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behaviour than numerical artefacts as an increase in the grid resolution does not change
their occurrence. The force convergence mostly shares the same behaviour as the pressure
and velocity, but, for some specific cases, exhibits time out and divergence states for slightly
smaller inflow velocities. As a result, the following particle-related studies are limited to
inflow velocities smaller than ūin = 28 m s−1.

In order to confirm these observations, the transient behaviour of the velocity criterion
is shown in Figure 12 for a resolution of N = 96 and different inflow velocities.
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10.0
14.0
20.0
24.0
30.0
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Figure 12. Transient development of velocity convergence with a resolution of N = 96 for different
inflow velocities ūin. Dashed line represents residuum rū.

For inflow velocities up to ūin = 26 m s−1, convergence can be achieved within less
than t = 0.02 s, while smaller velocities generally lead to a slower convergence. An inflow
velocity of ūin = 30 m s−1, in contrast, results in a continuously fluctuating behaviour
around σu = 1 × 10−4, rendering it impossible to obtain a converged fluid field with
respect to the specified residuum of ru = 1× 10−6. In order to ensure convergence with a
sufficient distance to the convergence limit, an inflow velocity of ūin = 20 m s−1 is used
for all following particle-related studies. The respective transient behaviour of all three
convergence quantities for a resolution of N = 96 is shown in Figure 13.
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Figure 13. Transient development of velocity, pressure and force convergence for an inflow velocity
of ūin = 20 m s−1 with a resolution of N = 96. Dashed lines represent residuals ru,rp and rF. Dotted
lines indicate time of flow and force convergence.

All convergence quantities show a similar behaviour: After a short transition period,
the quantities head towards their respective residuum with a similar slope. The fluid
field converges first at t = 7.5 ms, but is followed shortly by the convergence of the
hydrodynamic force on the particle surface at t = 8.65 ms. This shows that all quantities
are strongly coupled, but suggests that fluid convergence generally has to be ensured first.
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4.2.2. Flow Field

The flow field around the single fragment is shown in Figure 14 for an inflow velocity
of ūin = 20.0 m s−1 and a resolution of N = 96.

24 mm

xy
z

0.0 8.0 16.0 24.0 32.0 40.0

|u| in m s−1

Figure 14. Flow field with an inflow velocity of ūin = 20.0 m s−1 and a resolution of N = 96 featuring
a single PM layer fragment in gray. Dark yellow structures represent porous filter substrate. Colour
scale indicates local velocity magnitude.

Due to its small dimensions, the fragment does not lead to great differences in the
global fluid field with respect to the one in the particle-free case. In the direct vicinity of
the fragment, however, an acceleration of the local fluid velocity can be observed on the
fragment’s upper side. In the shielded area right behind it, a region of greatly reduced
velocity can be found, which is large enough to potentially influence the flow conditions at
neighbouring fragments.

The influence of the inflow velocity on all three force variants is shown in Figure 15.
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Figure 15. Comparison of standard normal force FN , tangential force FT and rotation-induced normal
force FN,rot at convergence with a resolution of N = 96 for different inflow velocities.

All forces feature small values for velocities close to zero, but increase continuously
for higher velocities. While the tangential force FT is always positive, the standard normal
and rotation-induced normal forces FN and FN,rot only exhibit positive values for inflow
velocities greater than ūin = 15 m s−1 and ūin = 8 m s−1, respectively. In accordance with
the observations in Hafen et al. [11], this shows that detachment of particle structures with
similar form can most likely only be caused by tangential forces when considering smaller
inflow velocities. The rotation-induced normal force is always greater than the standard
normal force and even becomes greater than the tangential one after ūin = 15 m s−1. Normal
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induced detachment assuming a non-slipping eccentric centre of rotation can, therefore, be
reasoned to only depend on the rotation-induced normal force FN,rot, leading to neglect of
the standard normal force FN in the remainder of this work.

In order to investigate the fluid’s local influence on the rotation-induced normal force
FN,rot, the local contributions of the torque Ty on the fragment surface are visualized in
Figure 16, assuming an eccentric centre of rotation.

xy
z

0.0 8.0 16.0 24.0 32.0 40.0

|u| in m s−1

−8.0 −4.8 −1.6 1.6 4.8 8.0

Ty(xb) in 10−11 N

Figure 16. Detailed flow field featuring a single PM layer fragment coloured according to local
contribution to torque Ty(xb). Streamlines exhibit local flow direction. Left colour scale indicates
local flow velocity magnitude |u|. Porous substrate removed for visual clarity.

It can be observed that the highest force magnitude is found near the front upper
edge (dark blue, dark red), which forms the starting point for the elevated fluid velocity on
the fragment’s upper side. The edge also represents the inflection point between positive
and negative values that either contribute to the fragment’s detachment or an additional
support of adhesive forces that keep the fragment attached to the porous substrate. Flow
conditions in this region, and all factors potentially influencing them before reaching this
position, are, therefore, of specific interest for the fragment’s detachment behaviour.

4.2.3. Grid Convergence

In order to access the accuracy of the hydrodynamic force, the grid convergence for
the tangential and the rotation-induced normal force FT and FN,rot is evaluated for different
inflow velocities ūin and shown in Figure 17.

As predicted, it can be observed that both forces are subject to much larger fluctu-
ations than the flow convergence quantities in the particle-free case in Figure 10 due to
anisotropic discretization effects. For most velocities, however, both forces exhibit linear to
quadratic convergence behaviour with a general error level below errL2 = 10−1. Consid-
ering that the presented model rather represents a real application case than a simplified
benchmark case (as, e.g., considered in Trunk et al. [24] and Haussmann et al. [36]), while
including both porous media modelling and the surface-resolved particle approach, this
represents satisfactory accuracy. When comparing results with different inflow velocities,
their apparent influence on the convergence behaviour should, nonetheless, be kept in
mind. This limitation, however, is irrelevant for the following section, as an inflow velocity
of ūin = 20 m s−1 is considered for all studies.
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Figure 17. Error errL2 of tangential and standard normal force for different inflow velocities ūin.
Reference solution χref at N = 160. Quadratic and linear EOC as guidelines.

The presented quantification of stability and accuracy for both the particle-free flow
in Section 3.1 and the single-layer fragment in Section 3.2 justify confidence in using the
wall-flow model with elevated inflow velocities. This statement includes the specific set of
boundary conditions, as well as the porous media and the resolved particle approach.

4.3. Deposition Layer during Break-Up

In this section, the results from investigating a uniformly fragmented deposition layer,
as well as the impacts of the modifications described in Section 3.3, are presented. The
latter comprise the influence of a uniform or increasing layer height (c.f. Sections 4.3.2
and 4.3.3), non-uniform layer fragmentation (c.f. Sections 4.3.4) and partial detachment
(c.f. Sections 4.3.5). A resolution of N = 96 and an inflow velocity of ūin = 20 m s−1 are
selected for all studies to ensure a sufficient distance to the stability limit and feasible
computation times.

4.3.1. Uniformly Fragmented Deposition Layer

A deposition layer with a significant height, covering the majority of an inlet channel’s
cross-section, leads to a great reduction in the volume available for the gaseous flow. The
resulting flow field for such a layer is shown in Figure 18.

24 mm

xy
z

0.0 8.0 16.0 24.0 32.0 40.0

|u| in m s−1

Figure 18. Flow field with uniformly fragmented PM layer in gray. Dark yellow structures represent
porous filter substrate. Colour scale indicates local velocity magnitude.
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Compared to the flow field in Figure 14, much higher fluid velocities of up to
|u| = 40 m s−1 emerge in the reduced cross-section. These form into a somewhat con-
tinuous layer of elevated fluid velocity closely above the fragmented layer over most of
the channel length. Due to the cross-section’s sudden reduction near the channel inlet, the
flow is initially directed towards the channel’s centre, leading to an arch over the first three
fragment rows. A close-up, focusing on the centre fragment of the third row, is shown in
Figure 19.

xy
z

0.0 8.0 16.0 24.0 32.0 40.0

|u| in m s−1

−8.0 −4.8 −1.6 1.6 4.8 8.0

Ty(xb) in 10−11 N

Figure 19. Detailed flow field with uniformly fragmented PM layer. Exemplary fragment coloured
according to local contribution to torque Ty(xb). Streamlines exhibit local flow direction. Left colour
scale indicates local flow velocity magnitude |u|. Porous substrate removed for visual clarity.

The exemplary fragment can be observed to exhibit a similar distribution of torque
contributions as in the single fragment case in Figure 16. The magnitude of positive
contributions on the exposed front side, however, is much smaller. The elevated velocity
layer can clearly be identified on the particle’s upper side, with a relatively sharp transition
zone. Between the individual fragments, distinct flow structures occur, which show some
resemblance to the ones obtained in a lid-driven cavity problem [37].

In order to derive predictions on the detachment likelihood of individual layer frag-
ments, the spatial distribution of the hydrodynamic force acting on the fragments on one of
the four substrate walls is retrieved. In Figure 20, the tangential force Ft and the rotation-
induced normal force Fn,rot are shown for each individual fragment along the channel
length for the right, centre and left rows of the fragment field.

It becomes apparent that, contrary to the observations at smaller velocities in
Hafen et al. [9], the y-position has a negligible influence, as all three rows feature a very
similar profile. For both forces, the frontmost fragment row experiences much higher
values, while the ones for the rotation-induced normal component exceed the tangential
ones. Due to the main flow direction along the channel length, all tangential values are
positive with a small decrease in the mid-channel.

However, all rotation-induced normal force values after the first fragment row stay
below zero. This already implies that, independent of any normal-directed adhesion force,
no detachment can occur in that region for similar configurations as long as the centre of
rotation in Figure 3 does not slip. The effect of the initial arch of elevated velocities on top
of the first three fragment rows, shown in Figure 18, is visible in the force values as well.
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Figure 20. Two-dimensional distribution of tangential forces Ft and rotation-induced normal forces
Fn,rot in a fragmented PM layer on one of four substrate walls. Differentiation between three lateral
rows. Gray plane at zero crossing.

A close-up of the different force contributions after the first row, including the standard
normal force component FN is shown in Figure 21.
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Figure 21. Distribution of tangential forces Ft, standard normal forces Fn and rotation-induced normal
forces Fn,rot in central and outer PM fragment rows.

It can be observed that the values of the centre line and the outer row indeed differ
in such a small way that only the centre row is considered for all following studies. The
close-up additionally reveals that the rotation-induced normal force always exceeds the
standard normal force, serving as another reason to use it as the proper representative for
the evaluation of normal-directed detachment (c.f. Section 3.2) in the following.

4.3.2. Influence of Uniform Layer Height

A change in the height of the fragmented deposition layer changes both the hydrody-
namic force on the surface of a single fragment and the overall flow field due to increase
in the available channel cross-section. The flow field for the smallest considered height of
dz = 21.0 µm is shown in Figure 22.
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Figure 22. Flow field with fragmented PM layer assuming a height of dz = 21.0 µm in gray. Dark
yellow structures represent porous filter substrate. Colour scale indicates local velocity magnitude.

The thin layer results in a more homogeneous flow field with no distinct layer of
elevated velocities on the fragment’s upper side. A comparison of the velocity profile for
different layer heights is shown in Figure 23. It should be noted at this point that all velocity
contributions are still averaged over the whole channel cross-section.
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Figure 23. Velocity profiles ūx(x) in inlet channel domain.

It can be observed that the development of the averaged fluid velocity in the main
flow direction is not influenced significantly, despite potentially large differences in local
velocity contributions. The resulting hydrodynamic forces for different layer heights are
shown in Figure 24.

The greatest impact of the fragment height can be found in the first row due to the
great flow exposition, while the following fragments are less affected. These exhibit only
negative contributions for the rotation-induced normal force, independent of the considered
layer height. For the thinnest layer, this is additionally true for the first row, rendering
normal-directed detachment unlikely.
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Figure 24. Distribution of tangential forces Ft and rotation-induced normal forces Fn,rot in central PM
fragment row for different uniform layer heights dz.

4.3.3. Influence of Increasing Layer Height

A less prominent flow exposition of the first particle row results from a less abrupt
decrease in the channel’s cross-section due to a gradually increasing layer height. The flow
field for a smooth transition from dz = 0.0425 mm to 0.17 mm over a relative channel length
of xrel = 0.4 is shown in Figure 25.

24 mm
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z

0.0 8.0 16.0 24.0 32.0 40.0

|u| in m s−1

Figure 25. Flow field with fragmented PM layer assuming an increasing height over a relative channel
length of xrel = 0.4 in gray. Dark yellow structures represent porous filter substrate. Colour scale
indicates local velocity magnitude.

The channel’s front appears similar to the uniform thin layer in Figure 22; however, an
increase in the velocity magnitude can be observed in the mid-channel.

As the fluid slows down again towards the channel’s back, entrained PM fragments
are expected to experience the strongest acceleration in the channel’s mid-section once
detached. The force distribution is shown in Figure 26.
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Figure 26. Distribution of tangential forces Ft and rotation-induced normal forces Fn,rot in central PM
fragment row with increasing height over different relative channel lengths xrel . Sketches (left) lay
out height profiles. Circular marks indicate secondary peaks.

The distribution of both forces is more homogeneous with respect to the previously
investigated layers. While the rotation-induced normal force FN,rot still features the distinct
force signal in the first row, the tangential force FT shows a rather gradual decrease. When
considering a sufficiently steep increase in height (xrel ≤ 0.4), a secondary peak emerges
in both force signals at the transition point to a uniform layer height. None of the peaks,
however, features significant positive values for the rotation-induced normal force to
favour detachment.

4.3.4. Influence of Non-Uniform Layer Fragmentation

All the previously investigated layer variants represent the same coverage of the
porous filter substrate. In order to investigate the coverage influence on both the fluid
field and the hydrodynamic forces, linearly increasing or decreasing fragment sizes are
considered while assuming the same height. Figure 27 shows the flow field for an increasing
coverage, starting with a relative fragment size of dxy,rel = 0.6 with respect to the standard
dimension of 340× 340× 170 µm3 (c.f. Section 3.2).

24 mm

xy
z

0.0 8.0 16.0 24.0 32.0 40.0
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Figure 27. Flow field with fragmented PM layer assuming an increasing substrate coverage beginning
from a relative fragment size of dxy,rel = 0.6 in gray. Dark yellow structures represent porous filter
substrate. Colour scale indicates local velocity magnitude.

It can be observed that the increased cross-section in the channel’s front prevents
the formation of an elevated velocity layer, as found in Figure 18. The distribution of the
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velocity magnitude, therefore, appears very homogeneous over the first two-thirds of the
channel length, leading to a nearly constant acceleration regime detached particles would
be exposed to.

In order to quantify the coverage influence for each relative fragment size dxy,rel , the
decreasing case is related to the increasing one by subtracting the velocity profiles of the
latter from the prior. The velocity differences are shown in Figure 28.
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Figure 28. Difference between velocity profiles ūx(x) of increasing and decreasing coverage for
different relative fragment sizes dxy,rel in inlet channel domain.

It can be seen that the subtraction of the profiles yields only positive values. This
means that a smaller fragment size in the front section (in the increasing case) leads to
a smaller average fluid velocity over most of the channel length. The maximum of the
velocity difference ∆ūx can be found in the mid-section of the channel. This represents a
wall-flow-specific feature, as the coverage between increasing and decreasing configuration
for the same relative fragment size dxy,rel differs most at the channel’s front and its back,
but is in fact identical in mid-channel. This implies that more of the flow passes through the
substrate’s front section when the coverage is smaller in this area. With larger differences
in the particle dimensions, the peak increases and slightly moves towards the back of the
channel. In any case, the values of the velocity difference ∆ūx can be considered relatively
small with respect to the inflow velocity of ūin = 20 m s−1.

The respective force distributions are shown in Figure 29.
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Figure 29. Distribution of tangential forces Ft and rotation-induced normal forces Fn,rot in central
PM fragment row with increasing and decreasing substrate coverage beginning from or ending with
different relative fragment sizes dxy,rel .
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The values of the first row are not affected by the decreasing coverage, which mainly
leads to differences in the channel back. In the increasing case, in turn, the values of the
first row directly depend on the fragment size and exhibit smaller force signals accordingly
when considering smaller relative fragment sizes dxy,rel . It is, however, noteworthy that,
for sufficiently small fragment sizes below dxy,rel = 0.6, a significant amount of slightly
positive values of the rotation-induced normal force can be found even after the first row.
Provided there are very small adhesive forces, this potentially enables the simultaneous
detachment of multiple fragments in this region.

4.3.5. Influence of Partial Detachment

Due to the prominent role of the first fragment row in all previous studies, the effect of
a fragmented layer with significant partial detachment in the front section is investigated.
The flow field assuming a partial detachment up to a relative channel length of xrel = 0.1 is
shown in Figure 30.

24 mm
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0.0 8.0 16.0 24.0 32.0 40.0
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Figure 30. Flow field with fragmented PM layer assuming partial detachment over a relative channel
length of xrel = 0.1 in gray. Dark yellow structures represent porous filter substrate. Colour scale
indicates local velocity magnitude.

The transition point between the particle free substrate area to the first fragment row is
characterized by a great increase in the fluid velocity magnitude due to the abrupt change
in the cross-section available for the gaseous flow. Unlike the full uniformly fragmented
deposition layer in Figure 18, however, a layer of elevated velocity does not appear and
the fluid velocity features a homogeneous cross-section over the whole inflow channel.
Considering the fact that the layer of elevated fluid velocity in the full layer case was
observed over most of the channel length, it can be reasoned that a partial detachment
of the first fragment rows leads to a homogenization of the whole fluid field. The force
distributions assuming partial detachment up to various relative channel lengths xrel are
shown in Figure 31.

It can be observed that the appearance of relatively high force values at the first row
do not depend on its overall position in the existing flow field, but can be attributed to
its exposed position in the flow. First rows located further towards the channel end do,
however, experience smaller forces. The trend continues until negative values result for
the rotation-induced normal force Fn,rot after a relative channel length of xrel = 0.5. This
implies that PM fragments in a uniformly fragmented layer most likely detach one row
after another until a threshold position is reached beyond which detachment can not occur
any more.
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Figure 31. Distribution of tangential forces Ft and rotation-induced normal forces Fn,rot in central PM
fragment row with partial detachment over different relative channel lengths xrel .

5. Conclusions

The present work investigates the PM structure detachment from surfaces of wall-flow
filters for elevated velocities using a previously developed LBM approach. Three different
scenarios were investigated: The particle-free flow in a clean channel was examined with
respect to the parameter domain that ensures sufficient stability and accuracy. By evaluating
the simulations’ final states, a necessary stability domain was defined and a resolution-
dependent expression for a stability threshold for the average inflow velocity was obtained.
For grid resolutions of at least N = 96 cells per channel diameter, reasonable velocity
and pressure accuracy could be achieved, including a satisfactory mass conservation. The
parameter domain was then reevaluated for the flow around a single layer fragment, attached
to the porous wall’s substrate, including the individual components of the hydrodynamic
surface force. It could be shown that the suitable parameter domain was limited to inflow
velocities below ūin = 28 m s−1. The flow field was shown to feature distinct regions
of increased and decreased local fluid velocities in the fragment’s vicinity. Furthermore,
the rotation-induced normal force was reasoned to be the relevant one for the prediction
of fragment detachment. The force contributions could be shown to feature satisfactory
accuracy for the wall-flow model with porous media and the surface-resolved particle
approach included. With the wall-flow model’s stability and accuracy for elevated velocities
ensured, a deposition layer during break-up was investigated regarding local effects on the
fluid field and the acting forces for different situations. Predictions on the detachment
likelihood of individual layer fragments and their mutual influence were derived based
on the spatial distribution of hydrodynamic forces. A uniformly fragmented PM layer of
considerable height could be shown to lead to local velocity magnitudes of up to twice as
large as the average inflow velocity. The first fragment row was identified as especially
prone to detachment, with the following fragments being rather shielded. Contrary to
previous observations [9], in low-velocity regimes, no significant dependency on the y-
position along the channel width was noticeable. The layer height could be shown to
predominantly have an effect on the first fragment row, while the impact could be observed
to be diminished when considering continuously increasing layer heights. The substrate
coverage turned out to have a minor effect on the velocity profile along the channel length,
but was shown to potentially enable simultaneous detachment over multiple fragment
rows when considering a sufficiently small coverage in the channel’s front. Eventually, it
could be shown that all considered cases do not significantly change the fact that normal
directed detachment most likely occurs row-for-row until non-detachable rows are reached
in the channel back.
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The presented work provides a detailed quantification of stability and accuracy for
static, impermeable PM layer fragments attached to the porous substrate’s surface inside
a single channel of a wall-flow filter. Furthermore, it provides relevant insights into
the nature of the hydrodynamic forces acting on the particulate structures and the local
detachment likelihood of individual layer fragments depending on local flow conditions
and the layer’s fragmentation. As these represent key factors for rearrangement events
and respective deposition pattern predictions, they contribute to potential optimizations in
engine performance, fuel consumption and the service life of wall-flow filters.
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Abbreviations

The following abbreviations are used in this manuscript:

BGK Bhatnagar–Gross–Krook
EOC experimental order of convergence
FVM finite volume method
HLBM homogenized lattice Boltzmann method
LBE lattice Boltzmann equation
LBM lattice Boltzmann method
NSE Navier–Stokes equation
PM particulate matter
PSM partially saturated method

Nomenclature

The following symbols are used in this manuscript:

u fluid velocity ∆lw,max distance to wall at peak velocity
p fluid pressure ∆lw,0 distance to wall at starting position
ρ fluid density ∆ls stopping distance
ν kinematic fluid viscosity FD drag force
x position dp diameter of reference sphere
t time χ generic flow quantity
δx discrete spacing of voxel mesh χ̄ average of generic flow quantity
δt discrete time step σ standard deviation of flow quantity
N resolution of voxel mesh r residuum of flow quantity
D number of spacial dimensions T number of last time steps
q number of discrete velocities M total cell number
ci discrete velocity lx channel length
f distribution function ly channel width
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fi discrete-velocity distribution function lz channel height

f (eq)
i

discrete-velocity equilibrium distribution
function

sl length scaling factor

Ωi discrete collision operator lx,s scaled channel length
τ lattice relaxation time ūin average inflow velocity
wi weight of discrete lattice velocity ūw average wall penetrating velocity

cs lattice speed of sound xp,0
particle starting position (before
detachment)

K permeability F0 initial force (before detachment)
Kmin minimum permeability ρp particle density
d confined permeability NOC number of cells
uef f effective velocity dx fragment’s x-dimension
B local weighting factor dy fragment’s y-dimension
uS velocity at solid particle node dz fragment’s z-dimension
k particle index dxy,rel fragment’s x- and y-dimension
Xk particle’s centre of mass FN,rot rotation-induced normal force

~x
point on outward-facing normal of
surface

xrel relative position along channel length

ε width of smooth transition layer np number of particles
xb position of discrete particle boundary node np,y number of particles over channel width
Fk force acting on particle’s centre of mass np,x number of particles over channel length
Tk torque acting on particle’s centre of mass tmax maximum simulation time
mp particle mass Cin inlet channel domain
up,init initial particle velocity Cout outlet channel domain
urel relative particle velocity w. r. t. fluid
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