63 research outputs found

    Regulation of the pleiotropic drug resistance transcription factors Pdr1 and Pdr3 in yeast

    Get PDF
    Aim: To understand how transcriptional factors Pdr1 and Pdr3, belonging to the pleiotropic drug resistance system, are activated, and regulated after introducing chemical toxins to the cell in the model organism Saccharomyces cerevisiae. Methods: Series of molecular methods were applied using different strains of S. cerevisiae over-expressing proteins of interest as a eukaryotic cell model. The chemical stress introduced to the cell is represented by menadione. Results were obtained performing protein detection and analysis. Additionally, the regulation of the DNA binding of the transcriptional activators after stimulation is quantified using chromatin immunoprecipitation, employing epitope-tagged factors and real-time qPCR. Results: Our results indicated higher expression levels of the Pdr1 transcriptional factor, compared to its homologous Pdr3 after treatment with menadione. The yeast-cell defence system was tested against various organic solvents to exclude the possibility of their presence potentially affecting the results. The results indicate that Pdr1 is most abundant after 30 minutes from the beginning of the treatment, compared with 240 minutes after the treatment when the function of the transcription factor is faded. It appears that Pdr1 binding to the PDR5 and SNQ2 promoters, which are both activated by Pdr1, peaks around the same time, or more precisely after 40 minutes from the start of the treatment. Conclusion: The tendency of Pdr1 reduction after its activation by menadione is detected. One possibility is that Pdr1, after recognizing the xenobiotic menadione, is removed by a degradation mechanism. Given the fact that Pdr1 directly binds the xenobiotic molecule, its destruction might help the cells to remove toxic levels of menadione. It is possible that overexpressing the part of Pdr1 which recognizes menadione alone was sufficient to detoxify and hence produce a tolerance towards menadione

    Different Toxicity Mechanisms for Citrinin and Ochratoxin A Revealed by Transcriptomic Analysis in Yeast

    Get PDF
    [EN] Citrinin (CIT) and ochratoxin A (OTA) are important mycotoxins, which frequently co-contaminate foodstuff. In order to assess the toxicologic threat posed by the two mycotoxins separately or in combination, their biological effects were studied here using genomic transcription profiling and specific live cell gene expression reporters in yeast cells. Both CIT and OTA cause highly transient transcriptional activation of different stress genes, which is greatly enhanced by the disruption of the multidrug exporter Pdr5. Therefore, we performed genome-wide transcription profiling experiments with the pdr5 mutant in response to acute CIT, OTA, or combined CIT/OTA exposure. We found that CIT and OTA activate divergent and largely nonoverlapping gene sets in yeast. CIT mainly caused the rapid induction of antioxidant and drug extrusion-related gene functions, while OTA mainly deregulated developmental genes related with yeast sporulation and sexual reproduction, having only a minor effect on the antioxidant response. The simultaneous exposure to CIT and OTA gave rise to a genomic response, which combined the specific features of the separated mycotoxin treatments. The application of stress-specific mutants and reporter gene fusions further confirmed that both mycotoxins have divergent biological effects in cells. Our results indicate that CIT exposure causes a strong oxidative stress, which triggers a massive transcriptional antioxidant and drug extrusion response, while OTA mainly deregulates developmental genes and only marginally induces the antioxidant defense.We thank Lorena Latorre and Javier Forment for their help with the microarray experiments and data analysis. This work was funded only in the initial phase by a grant from Ministerio de Economía y Competitividad (BFU2011-23326). We thank the Fond for Open Access Publication from Consejo Superior de Investigaciones Científicas (CSIC) for supporting publication costs of this article.Vanacloig-Pedrós, E.; Proft, MH.; Pascual-Ahuir Giner, MD. (2016). Different Toxicity Mechanisms for Citrinin and Ochratoxin A Revealed by Transcriptomic Analysis in Yeast. Toxins. 8(10):1-20. https://doi.org/10.3390/toxins8100273S120810Bennett, J. W., & Klich, M. (2003). Mycotoxins. Clinical Microbiology Reviews, 16(3), 497-516. doi:10.1128/cmr.16.3.497-516.2003Marroquín-Cardona, A. G., Johnson, N. M., Phillips, T. D., & Hayes, A. W. (2014). Mycotoxins in a changing global environment – A review. Food and Chemical Toxicology, 69, 220-230. doi:10.1016/j.fct.2014.04.025Moretti, A., Susca, A., Mulé, G., Logrieco, A. F., & Proctor, R. H. (2013). Molecular biodiversity of mycotoxigenic fungi that threaten food safety. International Journal of Food Microbiology, 167(1), 57-66. doi:10.1016/j.ijfoodmicro.2013.06.033Wu, F., Groopman, J. D., & Pestka, J. J. (2014). Public Health Impacts of Foodborne Mycotoxins. Annual Review of Food Science and Technology, 5(1), 351-372. doi:10.1146/annurev-food-030713-092431Möbius, N., & Hertweck, C. (2009). Fungal phytotoxins as mediators of virulence. Current Opinion in Plant Biology, 12(4), 390-398. doi:10.1016/j.pbi.2009.06.004Doi, K., & Uetsuka, K. (2014). Mechanisms of Mycotoxin-induced Dermal Toxicity and Tumorigenesis Through Oxidative Stress-related Pathways. Journal of Toxicologic Pathology, 27(1), 1-10. doi:10.1293/tox.2013-0062Escrivá, L., Font, G., & Manyes, L. (2015). In vivo toxicity studies of fusarium mycotoxins in the last decade: A review. Food and Chemical Toxicology, 78, 185-206. doi:10.1016/j.fct.2015.02.005Vettorazzi, A., González-Peñas, E., & de Cerain, A. L. (2014). Ochratoxin A kinetics: A review of analytical methods and studies in rat model. Food and Chemical Toxicology, 72, 273-288. doi:10.1016/j.fct.2014.07.020Wang, Y., Wang, L., Liu, F., Wang, Q., Selvaraj, J., Xing, F., … Liu, Y. (2016). Ochratoxin A Producing Fungi, Biosynthetic Pathway and Regulatory Mechanisms. Toxins, 8(3), 83. doi:10.3390/toxins8030083Kőszegi, T., & Poór, M. (2016). Ochratoxin A: Molecular Interactions, Mechanisms of Toxicity and Prevention at the Molecular Level. Toxins, 8(4), 111. doi:10.3390/toxins8040111Faucet, V., Pfohl-Leszkowicz, A., Dai, J., Castegnaro, M., & Manderville, R. A. (2004). Evidence for Covalent DNA Adduction by Ochratoxin A following Chronic Exposure to Rat and Subacute Exposure to Pig. Chemical Research in Toxicology, 17(9), 1289-1296. doi:10.1021/tx049877sMantle, P. G., Faucet-Marquis, V., Manderville, R. A., Squillaci, B., & Pfohl-Leszkowicz, A. (2010). Structures of Covalent Adducts between DNA and Ochratoxin A: A New Factor in Debate about Genotoxicity and Human Risk Assessment. Chemical Research in Toxicology, 23(1), 89-98. doi:10.1021/tx900295aPfohl-Leszkowicz, A., & Manderville, R. A. (2011). An Update on Direct Genotoxicity as a Molecular Mechanism of Ochratoxin A Carcinogenicity. Chemical Research in Toxicology, 25(2), 252-262. doi:10.1021/tx200430fRahimtula, A. D., Béréziat, J.-C., Bussacchini-Griot, V., & Bartsch, H. (1988). Lipid peroxidation as a possible cause of ochratoxin a toxicity. Biochemical Pharmacology, 37(23), 4469-4477. doi:10.1016/0006-2952(88)90662-4Sorrenti, V., Di Giacomo, C., Acquaviva, R., Barbagallo, I., Bognanno, M., & Galvano, F. (2013). Toxicity of Ochratoxin A and Its Modulation by Antioxidants: A Review. Toxins, 5(10), 1742-1766. doi:10.3390/toxins5101742BRAGULAT, M., MARTINEZ, E., CASTELLA, G., & CABANES, F. (2008). Ochratoxin A and citrinin producing species of the genus Penicillium from feedstuffs. International Journal of Food Microbiology, 126(1-2), 43-48. doi:10.1016/j.ijfoodmicro.2008.04.034Vrabcheva, T., Usleber, E., Dietrich, R., & Märtlbauer, E. (2000). Co-occurrence of Ochratoxin A and Citrinin in Cereals from Bulgarian Villages with a History of Balkan Endemic Nephropathy. Journal of Agricultural and Food Chemistry, 48(6), 2483-2488. doi:10.1021/jf990891yOstry, V., Malir, F., & Ruprich, J. (2013). Producers and Important Dietary Sources of Ochratoxin A and Citrinin. Toxins, 5(9), 1574-1586. doi:10.3390/toxins5091574Schmidt-Heydt, M., Graf, E., Stoll, D., & Geisen, R. (2012). The biosynthesis of ochratoxin A by Penicillium as one mechanism for adaptation to NaCl rich foods. Food Microbiology, 29(2), 233-241. doi:10.1016/j.fm.2011.08.003Schmidt-Heydt, M., Stoll, D., Schütz, P., & Geisen, R. (2015). Oxidative stress induces the biosynthesis of citrinin by Penicillium verrucosum at the expense of ochratoxin. International Journal of Food Microbiology, 192, 1-6. doi:10.1016/j.ijfoodmicro.2014.09.008Stoll, D., Schmidt-Heydt, M., & Geisen, R. (2013). Differences in the Regulation of Ochratoxin A by the HOG Pathway in Penicillium and Aspergillus in Response to High Osmolar Environments. Toxins, 5(7), 1282-1298. doi:10.3390/toxins5071282Flajs, D., & Peraica, M. (2009). Toxicological Properties of Citrinin. Archives of Industrial Hygiene and Toxicology, 60(4), 457-464. doi:10.2478/10004-1254-60-2009-1992Bouslimi, A., Ouannes, Z., Golli, E. E., Bouaziz, C., Hassen, W., & Bacha, H. (2008). Cytotoxicity and Oxidative Damage in Kidney Cells Exposed to the Mycotoxins Ochratoxin A and Citrinin: Individual and Combined Effects. Toxicology Mechanisms and Methods, 18(4), 341-349. doi:10.1080/15376510701556682Chan, W.-H. (2007). Citrinin induces apoptosis via a mitochondria-dependent pathway and inhibition of survival signals in embryonic stem cells, and causes developmental injury in blastocysts. Biochemical Journal, 404(2), 317-326. doi:10.1042/bj20061875Kumar, M., Dwivedi, P., Sharma, A. K., Sankar, M., Patil, R. D., & Singh, N. D. (2012). Apoptosis and lipid peroxidation in ochratoxin A- and citrinin-induced nephrotoxicity in rabbits. Toxicology and Industrial Health, 30(1), 90-98. doi:10.1177/0748233712452598Kumar, R., Dwivedi, P. D., Dhawan, A., Das, M., & Ansari, K. M. (2011). Citrinin-Generated Reactive Oxygen Species Cause Cell Cycle Arrest Leading to Apoptosis via the Intrinsic Mitochondrial Pathway in Mouse Skin. Toxicological Sciences, 122(2), 557-566. doi:10.1093/toxsci/kfr143Máté, G., Gazdag, Z., Mike, N., Papp, G., Pócsi, I., & Pesti, M. (2014). Regulation of oxidative stress-induced cytotoxic processes of citrinin in the fission yeast Schizosaccharomyces pombe. Toxicon, 90, 155-166. doi:10.1016/j.toxicon.2014.08.005Pascual-Ahuir, A., Vanacloig-Pedros, E., & Proft, M. (2014). Toxicity Mechanisms of the Food Contaminant Citrinin: Application of a Quantitative Yeast Model. Nutrients, 6(5), 2077-2087. doi:10.3390/nu6052077Ribeiro, S. M. R., Chagas, G. M., Campello, A. P., & Kluppel, M. L. W. (1997). Mechanism of citrinin-induced dysfunction of mitochondria. V. Effect on the homeostasis of the reactive oxygen species. Cell Biochemistry and Function, 15(3), 203-209. doi:10.1002/(sici)1099-0844(199709)15:33.0.co;2-jSingh, N. D., Sharma, A. K., Dwivedi, P., Leishangthem, G. D., Rahman, S., Reddy, J., & Kumar, M. (2013). Effect of feeding graded doses of citrinin on apoptosis and oxidative stress in male Wistar rats through the F1generation. Toxicology and Industrial Health, 32(3), 385-397. doi:10.1177/0748233713500836Yu, F.-Y., Liao, Y.-C., Chang, C.-H., & Liu, B.-H. (2006). Citrinin induces apoptosis in HL-60 cells via activation of the mitochondrial pathway. Toxicology Letters, 161(2), 143-151. doi:10.1016/j.toxlet.2005.08.009Föllmann, W., Behm, C., & Degen, G. H. (2014). Toxicity of the mycotoxin citrinin and its metabolite dihydrocitrinone and of mixtures of citrinin and ochratoxin A in vitro. Archives of Toxicology, 88(5), 1097-1107. doi:10.1007/s00204-014-1216-8Klarić, M., Rašić, D., & Peraica, M. (2013). Deleterious Effects of Mycotoxin Combinations Involving Ochratoxin A. Toxins, 5(11), 1965-1987. doi:10.3390/toxins5111965Afshari, C. A., Hamadeh, H. K., & Bushel, P. R. (2010). The Evolution of Bioinformatics in Toxicology: Advancing Toxicogenomics. Toxicological Sciences, 120(Supplement 1), S225-S237. doi:10.1093/toxsci/kfq373Yasokawa, D., & Iwahashi, H. (2010). Toxicogenomics using yeast DNA microarrays. Journal of Bioscience and Bioengineering, 110(5), 511-522. doi:10.1016/j.jbiosc.2010.06.003Arbillaga, L., Azqueta, A., van Delft, J. H. M., & López de Cerain, A. (2007). In vitro gene expression data supporting a DNA non-reactive genotoxic mechanism for ochratoxin A. Toxicology and Applied Pharmacology, 220(2), 216-224. doi:10.1016/j.taap.2007.01.008Hibi, D., Kijima, A., Kuroda, K., Suzuki, Y., Ishii, Y., Jin, M., … Umemura, T. (2013). Molecular mechanisms underlying ochratoxin A-induced genotoxicity: global gene expression analysis suggests induction of DNA double-strand breaks and cell cycle progression. The Journal of Toxicological Sciences, 38(1), 57-69. doi:10.2131/jts.38.57Marin-Kuan, M., Nestler, S., Verguet, C., Bezençon, C., Piguet, D., Mansourian, R., … Schilter, B. (2005). A Toxicogenomics Approach to Identify New Plausible Epigenetic Mechanisms of Ochratoxin A Carcinogenicity in Rat. Toxicological Sciences, 89(1), 120-134. doi:10.1093/toxsci/kfj017Vettorazzi, A., van Delft, J., & López de Cerain, A. (2013). A review on ochratoxin A transcriptomic studies. Food and Chemical Toxicology, 59, 766-783. doi:10.1016/j.fct.2013.05.043Iwahashi, H., Kitagawa, E., Suzuki, Y., Ueda, Y., Ishizawa, Y., Nobumasa, H., … Iwahashi, Y. (2007). Evaluation of toxicity of the mycotoxin citrinin using yeast ORF DNA microarray and Oligo DNA microarray. BMC Genomics, 8(1), 95. doi:10.1186/1471-2164-8-95Toone, W. M., Morgan, B. A., & Jones, N. (2001). Redox control of AP-1-like factors in yeast and beyond. Oncogene, 20(19), 2336-2346. doi:10.1038/sj.onc.1204384Luo, Y., Wang, J., Liu, B., Wang, Z., Yuan, Y., & Yue, T. (2015). Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption. PLOS ONE, 10(8), e0136045. doi:10.1371/journal.pone.0136045Piotrowska, M., & Masek, A. (2015). Saccharomyces Cerevisiae Cell Wall Components as Tools for Ochratoxin A Decontamination. Toxins, 7(4), 1151-1162. doi:10.3390/toxins7041151Jungwirth, H., & Kuchler, K. (2005). Yeast ABC transporters - A tale of sex, stress, drugs and aging. FEBS Letters, 580(4), 1131-1138. doi:10.1016/j.febslet.2005.12.050Prasad, R., & Goffeau, A. (2012). Yeast ATP-Binding Cassette Transporters Conferring Multidrug Resistance. Annual Review of Microbiology, 66(1), 39-63. doi:10.1146/annurev-micro-092611-150111Thakur, J. K., Arthanari, H., Yang, F., Pan, S.-J., Fan, X., Breger, J., … Näär, A. M. (2008). A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature, 452(7187), 604-609. doi:10.1038/nature06836Chen, C.-C., & Chan, W.-H. (2009). Inhibition of Citrinin-Induced Apoptotic Biochemical Signaling in Human Hepatoma G2 Cells by Resveratrol. International Journal of Molecular Sciences, 10(8), 3338-3357. doi:10.3390/ijms10083338Gayathri, L., Dhivya, R., Dhanasekaran, D., Periasamy, V. S., Alshatwi, A. A., & Akbarsha, M. A. (2015). Hepatotoxic effect of ochratoxin A and citrinin, alone and in combination, and protective effect of vitamin E: In vitro study in HepG2 cell. Food and Chemical Toxicology, 83, 151-163. doi:10.1016/j.fct.2015.06.009ALEO, M. (1991). The role of altered mitochondrial function in citrinin-induced toxicity to rat renal proximal tubule suspensions*1. Toxicology and Applied Pharmacology, 109(3), 455-463. doi:10.1016/0041-008x(91)90008-3Qi, X., Yu, T., Zhu, L., Gao, J., He, X., Huang, K., … Xu, W. (2014). Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses. Toxicology and Applied Pharmacology, 280(3), 543-549. doi:10.1016/j.taap.2014.08.030Taniai, E., Yafune, A., Nakajima, M., Hayashi, S.-M., Nakane, F., Itahashi, M., & Shibutani, M. (2014). Ochratoxin A induces karyomegaly and cell cycle aberrations in renal tubular cells without relation to induction of oxidative stress responses in rats. Toxicology Letters, 224(1), 64-72. doi:10.1016/j.toxlet.2013.10.001Govin, J., & Berger, S. L. (2009). Genome reprogramming during sporulation. The International Journal of Developmental Biology, 53(2-3), 425-432. doi:10.1387/ijdb.082687jgWinter, E. (2012). The Sum1/Ndt80 Transcriptional Switch and Commitment to Meiosis in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 76(1), 1-15. doi:10.1128/mmbr.05010-11Grunstein, M., & Gasser, S. M. (2013). Epigenetics in Saccharomyces cerevisiae. Cold Spring Harbor Perspectives in Biology, 5(7), a017491-a017491. doi:10.1101/cshperspect.a017491Pijnappel, W. W. M. P. (2001). The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. Genes & Development, 15(22), 2991-3004. doi:10.1101/gad.207401Xie, J., Pierce, M., Gailus-Durner, V., Wagner, M., Winter, E., & Vershon, A. K. (1999). Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. The EMBO Journal, 18(22), 6448-6454. doi:10.1093/emboj/18.22.6448Chalkiadaki, A., & Guarente, L. (2015). The multifaceted functions of sirtuins in cancer. Nature Reviews Cancer, 15(10), 608-624. doi:10.1038/nrc3985Roth, M., & Chen, W. Y. (2013). Sorting out functions of sirtuins in cancer. Oncogene, 33(13), 1609-1620. doi:10.1038/onc.2013.120Dolz-Edo, L., Rienzo, A., Poveda-Huertes, D., Pascual-Ahuir, A., & Proft, M. (2013). Deciphering Dynamic Dose Responses of Natural Promoters and Single cis Elements upon Osmotic and Oxidative Stress in Yeast. Molecular and Cellular Biology, 33(11), 2228-2240. doi:10.1128/mcb.00240-13Rienzo, A., Pascual-Ahuir, A., & Proft, M. (2012). The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell. Yeast, 29(6), 219-231. doi:10.1002/yea.290

    Chipper: discovering transcription-factor targets from chromatin immunoprecipitation microarrays using variance stabilization

    Get PDF
    Chromatin immunoprecipitation combined with microarray technology (Chip(2)) allows genome-wide determination of protein-DNA binding sites. The current standard method for analyzing Chip(2 )data requires additional control experiments that are subject to systematic error. We developed methods to assess significance using variance stabilization, learning error-model parameters without external control experiments. The method was validated experimentally, shows greater sensitivity than the current standard method, and incorporates false-discovery rate analysis. The corresponding software ('Chipper') is freely available. The method described here should help reveal an organism's transcription-regulatory 'wiring diagram'

    Stress-Activated Degradation of Sphingolipids Regulates Mitochondrial Function and Cell Death in Yeast

    Get PDF
    [EN] Sphingolipids are regulators of mitochondria-mediated cell death in higher eukaryotes. Here, we investigate how changes in sphingolipid metabolism and downstream intermediates of sphingosine impinge on mitochondrial function. We found in yeast that within the sphingolipid degradation pathway, the production via Dpl1p and degradation via Hfd1p of hexadecenal are critical for mitochondrial function and cell death. Genetic interventions, which favor hexadecenal accumulation, diminish oxygen consumption rates and increase reactive oxygen species production and mitochondrial fragmentation and vice versa. The location of the hexadecenal-degrading enzyme Hfd1p in punctuate structures all along the mitochondrial network depends on a functional ERMES (endoplasmic reticulum-mitochondria encounter structure) complex, indicating that modulation of hexadecenal levels at specific ER-mitochondria contact sites might be an important trigger of cell death. This is further supported by the finding that externally added hexadecenal or the absence of Hfd1p enhances cell death caused by ectopic expression of the human Bax protein. Finally, the induction of the sphingolipid degradation pathway upon stress is controlled by the Hog1p MAP kinase. Therefore, the stress-regulated modulation of sphingolipid degradation might be a conserved way to induce cell death in eukaryotic organisms.The authors thank Eulalia de Nadal, William Prinz, Benoit Kornmann, Stephen Manon, Benedikt Westermann, and Frank Madeo for the kind gift of yeast strains and plasmids. The authors thank Alba Calatayud for her help with Bax expression experiments and Benito Alarcon for his help with the confocal microscopy. This work was supported by the grants from the Ministerio de Economia y Competitividad (BFU2011-23326 and BFU2016-75792-R).Manzanares-Estreder, S.; Pascual-Ahuir Giner, MD.; Proft, M. (2017). Stress-Activated Degradation of Sphingolipids Regulates Mitochondrial Function and Cell Death in Yeast. Oxidative Medicine and Cellular Longevity. (2708345):1-15. https://doi.org/10.1155/2017/2708345S115270834

    Pro- and Antioxidant Functions of the Peroxisome-Mitochondria Connection and Its Impact on Aging and Disease

    Get PDF
    [EN] Peroxisomes and mitochondria are the main intracellular sources for reactive oxygen species. At the same time, both organelles are critical for the maintenance of a healthy redox balance in the cell. Consequently, failure in the function of both organelles is causally linked to oxidative stress and accelerated aging. However, it has become clear that peroxisomes and mitochondria are much more intimately connected both physiologically and structurally. Both organelles share common fission components to dynamically respond to environmental cues, and the autophagic turnover of both peroxisomes and mitochondria is decisive for cellular homeostasis. Moreover, peroxisomes can physically associate with mitochondria via specific protein complexes. Therefore, the structural and functional connection of both organelles is a critical and dynamic feature in the regulation of oxidative metabolism, whose dynamic nature will be revealed in the future. In this review, we will focus on fundamental aspects of the peroxisome-mitochondria interplay derived from simple models such as yeast and move onto discussing the impact of an impaired peroxisomal and mitochondrial homeostasis on ROS production, aging, and disease in humans.Work from the authors’ laboratory was supported by grants from Ministerio de Economía, Industria y Competitividad (BFU2016-75792-R) and from Ministerio de Economía y Competitividad (BFU2011-23326).Pascual-Ahuir Giner, MD.; Manzanares-Estreder, S.; Proft, M. (2017). Pro- and Antioxidant Functions of the Peroxisome-Mitochondria Connection and Its Impact on Aging and Disease. Oxidative Medicine and Cellular Longevity. (9860841). https://doi.org/10.1155/2017/9860841S986084

    Relativistic effects on the Fukui function

    Get PDF
    The extent of relativistic effects on the Fukui function, which describes local reactivity trends within conceptual density functional theory (DFT), and frontier orbital densities has been analysed on the basis of three benchmark molecules containing the heavy elements: Au, Pb, and Bi. Various approximate relativistic approaches have been tested and compared with the four-component fully relativistic reference. Scalar relativistic effects, as described by the scalar zeroth-order regular approximation methodology and effective core potential calculations, already provide a large part of the relativistic corrections. Inclusion of spin-orbit coupling effects improves the results, especially for the heavy p-block compounds. We thus expect that future conceptual DFT-based reactivity studies on heavy-element molecules can rely on one of the approximate relativistic methodologie

    PKA-chromatin association at stress responsive target genes from Saccharomyces cerevisiae

    Get PDF
    Gene expression regulation by intracellular stimulus-activated protein kinases is essential for cell adaptation to environmental changes. There are three PKA catalytic subunits in Saccharomyces cerevisiae: Tpk1, Tpk2, and Tpk3 and one regulatory subunit: Bcy1. Previously, it has been demonstrated that Tpk1 and Tpk2 are associated with coding regions and promoters of target genes in a carbon source and oxidative stress dependent manner. Here we studied five genes, ALD6, SED1, HSP42, RPS29B, and RPL1B whose expression is regulated by saline stress. We found that PKA catalytic and regulatory subunits are associated with both coding regions and promoters of the analyzed genes in a stress dependent manner. Tpk1 and Tpk2 recruitment was completely abolished in catalytic inactive mutants. BCY1 deletion changed the binding kinetic to chromatin of each Tpk isoform and this strain displayed a deregulated gene expression in response to osmotic stress. In addition, yeast mutants with high PKA activity exhibit sustained association to target genes of chromatin-remodeling complexes such as Snf2-catalytic subunit of the SWI/SNF complex and Arp8-component of INO80 complex, leading to upregulation of gene expression during osmotic stress. Tpk1 accumulation in the nucleus was stimulated upon osmotic stress, while the nuclear localization of Tpk2 and Bcy1 showed no change. We found that each PKA subunit is transported into the nucleus by a different β-karyopherin pathway. Moreover, β-karyopherin mutant strains abolished the chromatin association of Tpk1 or Tpk2, suggesting that nuclear localization of PKA catalytic subunits is required for its association to target genes and properly gene expression

    Capturing and Understanding the Dynamics and Heterogeneity of Gene Expression in the Living Cell

    Get PDF
    [EN] The regulation of gene expression is a fundamental process enabling cells to respond to internal and external stimuli or to execute developmental programs. Changes in gene expression are highly dynamic and depend on many intrinsic and extrinsic factors. In this review, we highlight the dynamic nature of transient gene expression changes to better understand cell physiology and development in general. We will start by comparing recent in vivo procedures to capture gene expression in real time. Intrinsic factors modulating gene expression dynamics will then be discussed, focusing on chromatin modifications. Furthermore, we will dissect how cell physiology or age impacts on dynamic gene regulation and especially discuss molecular insights into acquired transcriptional memory. Finally, this review will give an update on the mechanisms of heterogeneous gene expression among genetically identical individual cells. We will mainly focus on state-of-the-art developments in the yeast model but also cover higher eukaryotic systems.This work was funded by Ministerio de Ciencia, Innovacion y Universidades, grant number BFU2016-75792-R.Pascual-Ahuir Giner, MD.; Fita-Torró, J.; Proft, MH. (2020). Capturing and Understanding the Dynamics and Heterogeneity of Gene Expression in the Living Cell. International Journal of Molecular Sciences. 21(21):1-19. https://doi.org/10.3390/ijms21218278S1192121Murray, J. I., Whitfield, M. L., Trinklein, N. D., Myers, R. M., Brown, P. O., & Botstein, D. (2004). Diverse and Specific Gene Expression Responses to Stresses in Cultured Human Cells. Molecular Biology of the Cell, 15(5), 2361-2374. doi:10.1091/mbc.e03-11-0799Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., … Brown, P. O. (2000). Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. Molecular Biology of the Cell, 11(12), 4241-4257. doi:10.1091/mbc.11.12.4241de-Leon, S. B.-T., & Davidson, E. H. (2007). Gene Regulation: Gene Control Network in Development. Annual Review of Biophysics and Biomolecular Structure, 36(1), 191-212. doi:10.1146/annurev.biophys.35.040405.102002Lenstra, T. L., Rodriguez, J., Chen, H., & Larson, D. R. (2016). Transcription Dynamics in Living Cells. Annual Review of Biophysics, 45(1), 25-47. doi:10.1146/annurev-biophys-062215-010838Coulon, A., Chow, C. C., Singer, R. H., & Larson, D. R. (2013). Eukaryotic transcriptional dynamics: from single molecules to cell populations. Nature Reviews Genetics, 14(8), 572-584. doi:10.1038/nrg3484Yosef, N., & Regev, A. (2011). Impulse Control: Temporal Dynamics in Gene Transcription. Cell, 144(6), 886-896. doi:10.1016/j.cell.2011.02.015Purvis, J. E., & Lahav, G. (2013). Encoding and Decoding Cellular Information through Signaling Dynamics. Cell, 152(5), 945-956. doi:10.1016/j.cell.2013.02.005Weake, V. M., & Workman, J. L. (2010). Inducible gene expression: diverse regulatory mechanisms. Nature Reviews Genetics, 11(6), 426-437. doi:10.1038/nrg2781De Nadal, E., Ammerer, G., & Posas, F. (2011). Controlling gene expression in response to stress. Nature Reviews Genetics, 12(12), 833-845. doi:10.1038/nrg3055Vihervaara, A., Duarte, F. M., & Lis, J. T. (2018). Molecular mechanisms driving transcriptional stress responses. Nature Reviews Genetics, 19(6), 385-397. doi:10.1038/s41576-018-0001-6Pérez-Ortín, J. E., Alepuz, P., Chávez, S., & Choder, M. (2013). Eukaryotic mRNA Decay: Methodologies, Pathways, and Links to Other Stages of Gene Expression. Journal of Molecular Biology, 425(20), 3750-3775. doi:10.1016/j.jmb.2013.02.029Aparicio, O., Geisberg, J. V., Sekinger, E., Yang, A., Moqtaderi, Z., & Struhl, K. (2005). Chromatin Immunoprecipitation for Determining the Association of Proteins with Specific Genomic Sequences In Vivo. Current Protocols in Molecular Biology, 69(1). doi:10.1002/0471142727.mb2103s69Wa Maina, C., Honkela, A., Matarese, F., Grote, K., Stunnenberg, H. G., Reid, G., … Rattray, M. (2014). Inference of RNA Polymerase II Transcription Dynamics from Chromatin Immunoprecipitation Time Course Data. PLoS Computational Biology, 10(5), e1003598. doi:10.1371/journal.pcbi.1003598Mason, P. B., & Struhl, K. (2005). Distinction and Relationship between Elongation Rate and Processivity of RNA Polymerase II In Vivo. Molecular Cell, 17(6), 831-840. doi:10.1016/j.molcel.2005.02.017Sato, H., Das, S., Singer, R. H., & Vera, M. (2020). Imaging of DNA and RNA in Living Eukaryotic Cells to Reveal Spatiotemporal Dynamics of Gene Expression. Annual Review of Biochemistry, 89(1), 159-187. doi:10.1146/annurev-biochem-011520-104955Janicki, S. M., Tsukamoto, T., Salghetti, S. E., Tansey, W. P., Sachidanandam, R., Prasanth, K. V., … Spector, D. L. (2004). From Silencing to Gene Expression. Cell, 116(5), 683-698. doi:10.1016/s0092-8674(04)00171-0Chao, J. A., Patskovsky, Y., Almo, S. C., & Singer, R. H. (2007). Structural basis for the coevolution of a viral RNA–protein complex. Nature Structural & Molecular Biology, 15(1), 103-105. doi:10.1038/nsmb1327Bertrand, E., Chartrand, P., Schaefer, M., Shenoy, S. M., Singer, R. H., & Long, R. M. (1998). Localization of ASH1 mRNA Particles in Living Yeast. Molecular Cell, 2(4), 437-445. doi:10.1016/s1097-2765(00)80143-4Campbell, P. D., Chao, J. A., Singer, R. H., & Marlow, F. L. (2015). Dynamic visualization of transcription and RNA subcellular localization in zebrafish. Development. doi:10.1242/dev.118968Golding, I., Paulsson, J., Zawilski, S. M., & Cox, E. C. (2005). Real-Time Kinetics of Gene Activity in Individual Bacteria. Cell, 123(6), 1025-1036. doi:10.1016/j.cell.2005.09.031Larson, D. R., Zenklusen, D., Wu, B., Chao, J. A., & Singer, R. H. (2011). Real-Time Observation of Transcription Initiation and Elongation on an Endogenous Yeast Gene. Science, 332(6028), 475-478. doi:10.1126/science.1202142Chubb, J. R., Trcek, T., Shenoy, S. M., & Singer, R. H. (2006). Transcriptional Pulsing of a Developmental Gene. Current Biology, 16(10), 1018-1025. doi:10.1016/j.cub.2006.03.092Garcia, H. G., Tikhonov, M., Lin, A., & Gregor, T. (2013). Quantitative Imaging of Transcription in Living Drosophila Embryos Links Polymerase Activity to Patterning. Current Biology, 23(21), 2140-2145. doi:10.1016/j.cub.2013.08.054Xu, H., Wang, J., Liang, Y., Fu, Y., Li, S., Huang, J., … Chen, B. (2020). TriTag: an integrative tool to correlate chromatin dynamics and gene expression in living cells. Nucleic Acids Research, 48(22), e127-e127. doi:10.1093/nar/gkaa906Niedenthal, R. K., Riles, L., Johnston, M., & Hegemann, J. H. (1996). Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast, 12(8), 773-786. doi:10.1002/(sici)1097-0061(19960630)12:83.0.co;2-lPlautz, J. D., Day, R. N., Dailey, G. M., Welsh, S. B., Hall, J. C., Halpain, S., & Kay, S. A. (1996). Green fluorescent protein and its derivatives as versatile markers for gene expression in living Drosophila melanogaster, plant and mammalian cells. Gene, 173(1), 83-87. doi:10.1016/0378-1119(95)00700-8Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., & Prasher, D. C. (1994). Green Fluorescent Protein as a Marker for Gene Expression. Science, 263(5148), 802-805. doi:10.1126/science.8303295Longo, D., & Hasty, J. (2006). Dynamics of single‐cell gene expression. Molecular Systems Biology, 2(1), 64. doi:10.1038/msb4100110Zou, F., & Bai, L. (2019). Using time-lapse fluorescence microscopy to study gene regulation. Methods, 159-160, 138-145. doi:10.1016/j.ymeth.2018.12.010Han, J., Xia, A., Huang, Y., Ni, L., Chen, W., Jin, Z., … Jin, F. (2019). Simultaneous Visualization of Multiple Gene Expression in Single Cells Using an Engineered Multicolor Reporter Toolbox and Approach of Spectral Crosstalk Correction. ACS Synthetic Biology, 8(11), 2536-2546. doi:10.1021/acssynbio.9b00223Mateus, C., & Avery, S. V. (2000). Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry. Yeast, 16(14), 1313-1323. doi:10.1002/1097-0061(200010)16:143.0.co;2-oLi, X., Zhao, X., Fang, Y., Jiang, X., Duong, T., Fan, C., … Kain, S. R. (1998). Generation of Destabilized Green Fluorescent Protein as a Transcription Reporter. Journal of Biological Chemistry, 273(52), 34970-34975. doi:10.1074/jbc.273.52.34970Andersen, J. B., Sternberg, C., Poulsen, L. K., Bjørn, S. P., Givskov, M., & Molin, S. (1998). New Unstable Variants of Green Fluorescent Protein for Studies of Transient Gene Expression in Bacteria. Applied and Environmental Microbiology, 64(6), 2240-2246. doi:10.1128/aem.64.6.2240-2246.1998He, L., Binari, R., Huang, J., Falo-Sanjuan, J., & Perrimon, N. (2019). In vivo study of gene expression with an enhanced dual-color fluorescent transcriptional timer. eLife, 8. doi:10.7554/elife.46181Allen, M. S., Wilgus, J. R., Chewning, C. S., Sayler, G. S., & Simpson, M. L. (2006). A destabilized bacterial luciferase for dynamic gene expression studies. Systems and Synthetic Biology, 1(1), 3-9. doi:10.1007/s11693-006-9001-5Yasunaga, M., Murotomi, K., Abe, H., Yamazaki, T., Nishii, S., Ohbayashi, T., … Nakajima, Y. (2015). Highly sensitive luciferase reporter assay using a potent destabilization sequence of calpain 3. Journal of Biotechnology, 194, 115-123. doi:10.1016/j.jbiotec.2014.12.004Leclerc, G. M., Boockfor, F. R., Faught, W. J., & Frawley, L. S. (2000). Development of a Destabilized Firefly Luciferase Enzyme for Measurement of Gene Expression. BioTechniques, 29(3), 590-601. doi:10.2144/00293rr02Rienzo, A., Pascual-Ahuir, A., & Proft, M. (2012). The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell. Yeast, 29(6), 219-231. doi:10.1002/yea.2905Robertson, J. B., Stowers, C. C., Boczko, E., & Hirschie Johnson, C. (2008). Real-time luminescence monitoring of cell-cycle and respiratory oscillations in yeast. Proceedings of the National Academy of Sciences, 105(46), 17988-17993. doi:10.1073/pnas.0809482105Deng, L., Sugiura, R., Takeuchi, M., Suzuki, M., Ebina, H., Takami, T., … Kuno, T. (2006). Real-Time Monitoring of Calcineurin Activity in Living Cells: Evidence for Two Distinct Ca2+-dependent Pathways in Fission Yeast. Molecular Biology of the Cell, 17(11), 4790-4800. doi:10.1091/mbc.e06-06-0526Mazo-Vargas, A., Park, H., Aydin, M., & Buchler, N. E. (2014). Measuring fast gene dynamics in single cells with time-lapse luminescence microscopy. Molecular Biology of the Cell, 25(22), 3699-3708. doi:10.1091/mbc.e14-07-1187Liu, Z., & Tjian, R. (2018). Visualizing transcription factor dynamics in living cells. Journal of Cell Biology, 217(4), 1181-1191. doi:10.1083/jcb.201710038Jin, X., Hapsari, N. D., Lee, S., & Jo, K. (2020). DNA binding fluorescent proteins as single-molecule probes. The Analyst, 145(12), 4079-4095. doi:10.1039/d0an00218fDolz-Edo, L., Rienzo, A., Poveda-Huertes, D., Pascual-Ahuir, A., & Proft, M. (2013). Deciphering Dynamic Dose Responses of Natural Promoters and Single cis Elements upon Osmotic and Oxidative Stress in Yeast. Molecular and Cellular Biology, 33(11), 2228-2240. doi:10.1128/mcb.00240-13Pascual-Ahuir, A., González-Cantó, E., Juyoux, P., Pable, J., Poveda-Huertes, D., Saiz-Balbastre, S., … Proft, M. (2019). Dose dependent gene expression is dynamically modulated by the history, physiology and age of yeast cells. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1862(4), 457-471. doi:10.1016/j.bbagrm.2019.02.009Pelet, S., Rudolf, F., Nadal-Ribelles, M., de Nadal, E., Posas, F., & Peter, M. (2011). Transient Activation of the HOG MAPK Pathway Regulates Bimodal Gene Expression. Science, 332(6030), 732-735. doi:10.1126/science.1198851Paliwal, S., Iglesias, P. A., Campbell, K., Hilioti, Z., Groisman, A., & Levchenko, A. (2007). MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast. Nature, 446(7131), 46-51. doi:10.1038/nature05561Zhang, Q., Yoon, Y., Yu, Y., Parnell, E. J., Garay, J. A. R., Mwangi, M. M., … Bai, L. (2013). Stochastic expression and epigenetic memory at the yeastHOpromoter. Proceedings of the National Academy of Sciences, 110(34), 14012-14017. doi:10.1073/pnas.1306113110Gutin, J., Joseph‐Strauss, D., Sadeh, A., Shalom, E., & Friedman, N. (2019). Genetic screen of the yeast environmental stress response dynamics uncovers distinct regulatory phases. Molecular Systems Biology, 15(8). doi:10.15252/msb.20198939Rajkumar, A. S., Liu, G., Bergenholm, D., Arsovska, D., Kristensen, M., Nielsen, J., … Keasling, J. D. (2016). Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Research, 44(17), e136-e136. doi:10.1093/nar/gkw553Duveau, F., Yuan, D. C., Metzger, B. P. H., Hodgins-Davis, A., & Wittkopp, P. J. (2017). Effects of mutation and selection on plasticity of a promoter activity inSaccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 114(52), E11218-E11227. doi:10.1073/pnas.1713960115Redden, H., Morse, N., & Alper, H. S. (2014). The synthetic biology toolbox for tuning gene expression in yeast. FEMS Yeast Research, n/a-n/a. doi:10.1111/1567-1364.12188Brouwer, I., & Lenstra, T. L. (2019). Visualizing transcription: key to understanding gene expression dynamics. Current Opinion in Chemical Biology, 51, 122-129. doi:10.1016/j.cbpa.2019.05.031Rodriguez, J., & Larson, D. R. (2020). Transcription in Living Cells: Molecular Mechanisms of Bursting. Annual Review of Biochemistry, 89(1), 189-212. doi:10.1146/annurev-biochem-011520-105250Tunnacliffe, E., & Chubb, J. R. (2020). What Is a Transcriptional Burst? Trends in Genetics, 36(4), 288-297. doi:10.1016/j.tig.2020.01.003Hornung, G., Bar-Ziv, R., Rosin, D., Tokuriki, N., Tawfik, D. S., Oren, M., & Barkai, N. (2012). Noise-mean relationship in mutated promoters. Genome Research, 22(12), 2409-2417. doi:10.1101/gr.139378.112Dadiani, M., van Dijk, D., Segal, B., Field, Y., Ben-Artzi, G., Raveh-Sadka, T., … Segal, E. (2013). Two DNA-encoded strategies for increasing expression with opposing effects on promoter dynamics and transcriptional noise. Genome Research, 23(6), 966-976. doi:10.1101/gr.149096.112Raveh-Sadka, T., Levo, M., Shabi, U., Shany, B., Keren, L., Lotan-Pompan, M., … Segal, E. (2012). Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast. Nature Genetics, 44(7), 743-750. doi:10.1038/ng.2305Van Dijk, D., Sharon, E., Lotan-Pompan, M., Weinberger, A., Segal, E., & Carey, L. B. (2016). Large-scale mapping of gene regulatory logic reveals context-dependent repression by transcriptional activators. Genome Research, 27(1), 87-94. doi:10.1101/gr.212316.116Mehta, G. D., Ball, D. A., Eriksson, P. R., Chereji, R. V., Clark, D. J., McNally, J. G., & Karpova, T. S. (2018). Single-Molecule Analysis Reveals Linked Cycles of RSC Chromatin Remodeling and Ace1p Transcription Factor Binding in Yeast. Molecular Cell, 72(5), 875-887.e9. doi:10.1016/j.molcel.2018.09.009Ball, D. A., Mehta, G. D., Salomon-Kent, R., Mazza, D., Morisaki, T., Mueller, F., … Karpova, T. S. (2016). Single molecule tracking of Ace1p in Saccharomyces cerevisiae defines a characteristic residence time for non-specific interactions of transcription factors with chromatin. Nucleic Acids Research, 44(21), e160-e160. doi:10.1093/nar/gkw744Karpova, T. S., Kim, M. J., Spriet, C., Nalley, K., Stasevich, T. J., Kherrouche, Z., … McNally, J. G. (2008). Concurrent Fast and Slow Cycling of a Transcriptional Activator at an Endogenous Promoter. Science, 319(5862), 466-469. doi:10.1126/science.1150559Donovan, B. T., Huynh, A., Ball, D. A., Patel, H. P., Poirier, M. G., Larson, D. R., … Lenstra, T. L. (2019). Live‐cell imaging reveals the interplay between transcription factors, nucleosomes, and bursting. The EMBO Journal, 38(12). doi:10.15252/embj.2018100809Lenstra, T. L., Coulon, A., Chow, C. C., & Larson, D. R. (2015). Single-Molecule Imaging Reveals a Switch between Spurious and Functional ncRNA Transcription. Molecular Cell, 60(4), 597-610. doi:10.1016/j.molcel.2015.09.028Senecal, A., Munsky, B., Proux, F., Ly, N., Braye, F. E., Zimmer, C., … Darzacq, X. (2014). Transcription Factors Modulate c-Fos Transcriptional Bursts. Cell Reports, 8(1), 75-83. doi:10.1016/j.celrep.2014.05.053Stavreva, D. A., Garcia, D. A., Fettweis, G., Gudla, P. R., Zaki, G. F., Soni, V., … Hager, G. L. (2019). Transcriptional Bursting and Co-bursting Regulation by Steroid Hormone Release Pattern and Transcription Factor Mobility. Molecular Cell, 75(6), 1161-1177.e11. doi:10.1016/j.molcel.2019.06.042Nelson, D. E., Ihekwaba, A. E. C., Elliott, M., Johnson, J. R., Gibney, C. A., Foreman, B. E., … White, M. R. H. (2004). Oscillations in NF-κB Signaling Control the Dynamics of Gene Expression. Science, 306(5696), 704-708. doi:10.1126/science.1099962Lahav, G., Rosenfeld, N., Sigal, A., Geva-Zatorsky, N., Levine, A. J., Elowitz, M. B., & Alon, U. (2004). Dynamics of the p53-Mdm2 feedback loop in individual cells. Nature Genetics, 36(2), 147-150. doi:10.1038/ng1293Izeddin, I., Récamier, V., Bosanac, L., Cissé, I. I., Boudarene, L., Dugast-Darzacq, C., … Darzacq, X. (2014). Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus. eLife, 3. doi:10.7554/elife.02230Suter, D. M., Molina, N., Gatfield, D., Schneider, K., Schibler, U., & Naef, F. (2011). Mammalian Genes Are Transcribed with Widely Different Bursting Kinetics. Science, 332(6028), 472-474. doi:10.1126/science.1198817Keller, S. H., Jena, S. G., Yamazaki, Y., & Lim, B. (2020). Regulation of spatiotemporal limits of developmental gene expression via enhancer grammar. Proceedings of the National Academy of Sciences, 117(26), 15096-15103. doi:10.1073/pnas.1917040117Ochiai, H., Hayashi, T., Umeda, M., Yoshimura, M., Harada, A., Shimizu, Y., … Nikaido, I. (2020). Genome-wide kinetic properties of transcriptional bursting in mouse embryonic stem cells. Science Advances, 6(25). doi:10.1126/sciadv.aaz6699Hoppe, C., Bowles, J. R., Minchington, T. G., Sutcliffe, C., Upadhyai, P., Rattray, M., & Ashe, H. L. (2020). Modulation of the Promoter Activation Rate Dictates the Transcriptional Response to Graded BMP Signaling Levels in the Drosophila Embryo. Developmental Cell, 54(6), 727-741.e7. doi:10.1016/j.devcel.2020.07.007Bakker, R., Mani, M., & Carthew, R. W. (2020). The Wg and Dpp morphogens regulate gene expression by modulating the frequency of transcriptional bursts. eLife, 9. doi:10.7554/elife.56076Klemm, S. L., Shipony, Z., & Greenleaf, W. J. (2019). Chromatin accessibility and the regulatory epigenome. Nature Reviews Genetics, 20(4), 207-220. doi:10.1038/s41576-018-0089-8Nocetti, N., & Whitehouse, I. (2016). Nucleosome repositioning underlies dynamic gene expression. Genes & Development, 30(6), 660-672. doi:10.1101/gad.274910.115Cosma, M. P., Tanaka, T., & Nasmyth, K. (1999). Ordered Recruitment of Transcription and Chromatin Remodeling Factors to a Cell Cycle– and Developmentally Regulated Promoter. Cell, 97(3), 299-311. doi:10.1016/s0092-8674(00)80740-0Govind, C. K., Yoon, S., Qiu, H., Govind, S., & Hinnebusch, A. G. (2005). Simultaneous Recruitment of Coactivators by Gcn4p Stimulates Multiple Steps of Transcription In Vivo. Molecular and Cellular Biology, 25(13), 5626-5638. doi:10.1128/mcb.25.13.5626-5638.2005Biggar, S. R. (1999). Continuous and widespread roles for the Swi-Snf complex in transcription. The EMBO Journal, 18(8), 2254-2264. doi:10.1093/emboj/18.8.2254Rando, O. J., & Winston, F. (2012). Chromatin and Transcription in Yeast. Genetics, 190(2), 351-387. doi:10.1534/genetics.111.132266Shen, C.-H., Leblanc, B. P., Alfieri, J. A., & Clark, D. J. (2001). Remodeling of Yeast CUP1 Chromatin Involves Activator-Dependent Repositioning of Nucleosomes over the Entire Gene and Flanking Sequences. Molecular and Cellular Biology, 21(2), 534-547. doi:10.1128/mcb.21.2.534-547.2001Shen, C.-H., & Clark, D. J. (2001). DNA Sequence Plays a Major Role in Determining Nucleosome Positions in Yeast CUP1 Chromatin. Journal of Biological Chemistry, 276(37), 35209-35216. doi:10.1074/jbc.m104733200Erkina, T. Y., Zou, Y., Freeling, S., Vorobyev, V. I., & Erkine, A. M. (2009). Functional interplay between chromatin remodeling complexes RSC, SWI/SNF and ISWI in regulation of yeast heat shock genes. Nucleic Acids Research, 38(5), 1441-1449. doi:10.1093/nar/gkp1130Mitra, D., Parnell, E. J., Landon, J. W., Yu, Y., & Stillman, D. J. (2006). SWI/SNF Binding to the HO Promoter Requires Histone Acetylation and Stimulates TATA-Binding Protein Recruitment. Molecular and Cellular Biology, 26(11), 4095-4110. doi:10.1128/mcb.01849-05Sudarsanam, P. (1999). The nucleosome remodeling complex, Snf/Swi, is required for the maintenance of transcription invivo and is partially redundant with the histone acetyltransferase, Gcn5. The EMBO Journal, 18(11), 3101-3106. doi:10.1093/emboj/18.11.3101Barbaric, S., Luckenbach, T., Schmid, A., Blaschke, D., Hörz, W., & Korber, P. (2007). Redundancy of Chromatin Remodeling Pathways for the Induction of the Yeast PHO5 Promoter in Vivo. Journal of Biological Chemistry, 282(38), 27610-27621. doi:10.1074/jbc.m700623200Proft, M., & Struhl, K. (2002). Hog1 Kinase Converts the Sko1-Cyc8-Tup1 Repressor Complex into an Activator that Recruits SAGA and SWI/SNF in Response to Osmotic Stress. Molecular Cell, 9(6), 1307-1317. doi:10.1016/s1097-2765(02)00557-9Lemieux, K., & Gaudreau, L. (2004). Targeting of Swi/Snf to the yeast GAL1 UASG requires the Mediator, TAFIIs, and RNA polymerase II. The EMBO Journal, 23(20), 4040-4050. doi:10.1038/sj.emboj.7600416Rienzo, A., Poveda-Huertes, D., Aydin, S., Buchler, N. E., Pascual-Ahuir, A., & Proft, M. (2015). Different Mechanisms Confer Gradual Control and Memory at Nutrient- and Stress-R

    MutationTaster2021

    Get PDF
    Here we present an update to MutationTaster, our DNA variant effect prediction tool. The new version uses a different prediction model and attains higher accuracy than its predecessor, especially for rare benign variants. In addition, we have integrated many sources of data that only became available after the last release (such as gnomAD and ExAC pLI scores) and changed the splice site prediction model. To more easily assess the relevance of detected known disease mutations to the clinical phenotype of the patient, MutationTaster now provides information on the diseases they cause. Further changes represent a major overhaul of the interfaces to increase user-friendliness whilst many changes under the hood have been designed to accelerate the processing of uploaded VCF files. We also offer an API for the rapid automated query of smaller numbers of variants from within other software. MutationTaster2021 integrates our disease mutation search engine, MutationDistiller, to prioritise variants from VCF files using the patient's clinical phenotype. The novel version is available at https://www.genecascade.org/MutationTaster2021/. This website is free and open to all users and there is no login requirement

    RegEl corpus: identifying DNA regulatory elements in the scientific literature

    Get PDF
    High-throughput technologies led to the generation of a wealth of data on regulatory DNA elements in the human genome. However, results from disease-driven studies are primarily shared in textual form as scientific articles. Information extraction (IE) algorithms allow this information to be (semi-)automatically accessed. Their development, however, is dependent on the availability of annotated corpora. Therefore, we introduce RegEl (Regulatory Elements), the first freely available corpus annotated with regulatory DNA elements comprising 305 PubMed abstracts for a total of 2690 sentences. We focus on enhancers, promoters and transcription factor binding sites. Three annotators worked in two stages, achieving an overall 0.73 F1 inter-annotator agreement and 0.46 for regulatory elements. Depending on the entity type, IE baselines reach F1-scores of 0.48–0.91 for entity detection and 0.71–0.88 for entity normalization. Next, we apply our entity detection models to the entire PubMed collection and extract co-occurrences of genes or diseases with regulatory elements. This generates large collections of regulatory elements associated with 137 870 unique genes and 7420 diseases, which we make openly available.Database URL: https://zenodo.org/record/6418451#.YqcLHvexVqgPeer Reviewe
    corecore