28 research outputs found

    Transition Metal and Lanthanide Complexes of 1,4,7,10-Tetraallyl- and 1,4,7,10-Tetra-3-butenyl- 1,4,7,10-tetraazacyclododecane

    Get PDF
    1,4,7,10-Tetraazacyclododecane (1) reacts with allylbromide and 3-butenylbromide giving 1,4,7,10-tetraallyl-1,4,7,10-tetraazacyclododecane (TAC) (2a) and 1,4,7,10-tetra-3-butenyl-1,4,7,10- tetraazacyclododecane (TBC) (2b), respectively. Compounds 2a and 2b react with FeCl2, CoCl2, RhCl3, NiCl2, CuBr2, and TmCl3 forming the complexes [FeCl(TAC)]Cl (3a), [FeCl(TBC)]Cl (3b), [CoCl(TAC)]Cl (4), [RhCl(TAC)]Cl2 (5), [NiCl(TAC)]Cl (6a), [NiCl(TBC)]Cl (6b), [CuBr(TAC)]Br (7), [TmCl(TAC)]Cl2 (8a), and [TmCl(TBC)]Cl2 (8b). The reaction of 6a with an excess of CuCl affords a coordination polymer in which [NiCl(TAC)]+ cations are connected by [Cu6Cl8]2− anions (9). The 1H and 13C NMR spectra of 2a, 2b, 5, and 6a, as well as the single crystal X-ray structures of 2a ・3HCl, 6a, 6b, 7, and 9 are reported and discussed

    Deca(4-methylbenzyl)ferrocene and -stannocene

    Get PDF
    Cyclopentadiene reacts with five equivalents of 4-methylbenzylalcohol (1:5,6 mole ratio) and sodium yielding penta(4-methylbenzyl)cyclopenta-2,4-diene (1), which upon treatment with butyl lithium affords the lithium salt [(4-MeC6H4CH2)5C5]Li (2). The reactions of 2 with FeCl2 and SnCl2 result in the formation of deca(4-methylbenzyl)ferrocene (3) and deca(4-methylbenzyl)stannocene (4), respectively. The 1H and 13C NMR, IR and mass spectra of the new compounds as well as the single crystal X-ray structure analysis of 1 are reported and discussed

    Electron Release and Proton Acceptance Reactions of (dpp-BIAN)Mg(THF)3

    Get PDF
    (dpp-BIAN)Mg(THF)3 (1) (dpp-BIAN = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) and (PhCOO)2 react with splitting of the peroxide bridge and formation of the dimeric magnesium benzoate [(dpp-BIAN)MgOCOPh(THF)]2 (2). The reaction of 1 with PhCOOH yields the dimeric magnesium benzoate [(dpp-BIAN)(H)MgOCOPh(THF)]2 (3), whereas 1 and furanyl-2-carboxylic acid react with liberation of hydrogen and formation of (dpp-BIAN)Mg[OCO(2-C4H3O)]2 Mg(dpp-BIAN)(THF) (4). Compounds 2, 3, and 4 have been characterized by elemental analysis, IR spectroscopy, and X-ray structure analysis, compound 3 also by 1H NMR spectroscopy. The eightmembered metallacycles of the centrosymmetric dimers 2 and 3 are almost completely planar. The two magnesium atoms in 4 show different coordination spheres; one is surrounded by its ligands in a trigonal bipyramidal manner, the other one in a tetrahedral fashion. The Mg···Mg separations in 2, 3 and 4 are 4.236, 4.296, and 4.030 Å, respectively

    Organometallic Compounds of the Lanthanides 182 [1]. Calcium and Neodymium Complexes Containing the dpp-BIAN Ligand System: Synthesis and Molecular Structure of [(dpp-BIAN)CaI(THF)2]2 and [(dpp-BIAN)NdCl(THF)2]2

    Get PDF
    Oxydation of (dpp-BIAN)Ca(THF)4 with 0.5 equiv. of I2 in THF yields [(dpp-BIAN)CaI(THF)2]2 (1). A corresponding neodymium compound [(dpp-BIAN)NdCl(THF)2]2 (2) has been obtained by reaction of (dpp-BIAN)Na2 with NdCl3 in THF. The X-ray single crystal structure analyses show 1 and 2 to be isostructural dimers containing octahedrally coordinated metal atoms bridged by the respective halides. The chelating dpp-BIAN ligand acts as a radical anion in the Ca2+ complex 1 and as a dianion in the Nd3+ complex 2, respectively.DFG, SPP 1166, Lanthanoidspezifische Funktionalitäten in Molekül und Materia

    New Synthetic Routes for 1-Benzyl-1,4,7,10-tetraazacyclododecane and 1,4,7,10-Tetraazacyclododecane-1-acetic Acid Ethyl Ester, Important Starting Materials for Metal-coded DOTA-Based Affinity Tags

    Get PDF
    Two improved routes to synthesize 1-benzyl-1,4,7,10-tetraazacyclododecane (6) and 1,4,7,10- tetraazacyclododecane-1-acetic acid ethyl ester (11) are described as well as the synthesis of 1-{2-[4-(maleimido-N-propylacetamidobutyl)amino]-2-oxoethyl}-1,4,7,10-tetraazacyclododecane- 4,7,10-triacetic acid (17) and its Y, Ho, Tm, and Lu complexes. The 1H and 13C NMR spectra of the new compounds as well as the single crystal X-ray structure analyses of the intermediates 4-benzyl-1,7-bis(p-toluenesulfonyl)diethylenetriamine (3) and 1,4,7-tris(p-toluenesulfonyl)diethylenetriamine (7) are reported and discussed. The rare earth complexes of 17 have been characterized by 1H NMR spectroscopy and MALDI-TOF mass spectrometry.DFG, SPP 1166, Lanthanoidspezifische Funktionalitäten in Molekül und Materia

    Retrieving intracycle interference in angle-resolved laser-assisted photoemission from argon

    Get PDF
    We report on a combined experimental and theoretical study of XUV ionization of atomic argon in the presence of a near-infrared (NIR) laser field. Using a table-top source of wavelength-selected femtosecond XUV pulses in combination with a velocity map imaging spectrometer we record angle- and energy-resolved photoelectron distributions and simulate the experimental data by solving the time-dependent Schrödinger equation ab initio. In order to compare with the experimental data we average the calculated energy-angle probability distributions over the experimental focal volume for different values of the magnetic quantum number of the photoelectron. This averaging procedure washes out the intracycle interference pattern, which would otherwise be observed in the form of angular modulations of the photoelectron spectra. We recover these modulations experimentally and in the simulations by evaluating the difference between two averaged distributions that are obtained for slightly different NIR laser field intensities.Fil: Hummert, Johan. Max Born Institute; AlemaniaFil: Kubin, Markus. Max Born Institute; AlemaniaFil: López, Sebastián David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Fuks, Johanna Ildemar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Morales, Felipe. Max Born Institute; AlemaniaFil: Vrakking, Marc J. J.. Max Born Institute; AlemaniaFil: Kornilov, Oleg. Max Born Institute; AlemaniaFil: Arbó, Diego G.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentin

    Memory Self-Efficacy in its Social Cognitive Context

    Get PDF
    This chapter takes a primarily cognitive construct - memory self-efficacy (MSE) - and returns it to its roots - social cognition (Bandura, 1986). This is a natural and obvious move. MSE has evolved since the mid-1980s (Berry, West, & Powlishta, 1986; Hertzog, Dixon, Schulenberg, & Hultsch, 1987) to its present identity and status in the cognitive aging and adult developmental research literature. If it is to avoid becoming a hypothesis in search of data (Light, 1991) or worse, an epiphenomenon to more robust explanations of cognitive aging (e.g., speed) (Salthouse, 1993), its potential and limits must be scrutinized and subjected to rigorous new research agendas. Arguably, MSE has arrived at its present destination via metamemory (Dixon, Hertzog, & Hultsch, 1986; Hertzog, Dixon, & Hultsch, 1990a; Hertzog et al., 1987; Hultsch, Hertzog, Dixon, & Davidson, 1988), thereby acquiring a more cognitive emphasis than its clinical and social underpinnings suggest. This chapter presents MSE research from my lab that has been conducted from the orienting framework of self-efficacy theory and methodology (Bandura, 1977, 1986, 1997; Bandura, Adams, Hardy, & Howells, 1980; Bandura, Reese, & Adams, 1982). The value of this framework lies in its rich theoretical foundation, its unique measurement approach, and its ties to social cognition. The goal of the chapter is to evaluate the present status of MSE research and to suggest new research directions

    Synthesis and properties of new organoaluminium complexes

    No full text
    Die Arbeit umfasst die Synthese und Charakterisierung neuer Organoaluminium-Komplexe.Die Molekülstruktur von Dimethyl(2-dimethylaminoethoxy-1ĸO,N:2ĸO)aluminium-trimethylaluminium] (1) und Bis[dimethyl(μ-O-3-dimethylaminopropoxy-ĸO,N)aluminium] (2) wurden röntgenographisch aufgeklärt. Ausgehend von 2-Methylsulfanylethanol und Thiophen-2-methanol, sowie unterschiedlichen stöchiometrischen Mengen Trimethylaluminium (TMA) wurden entsprechende schwefelstabilisierte dimere Dimethylaluminiumalkoxy-Komplexe (5, 7) bzw. TMA-Addukt-Komplexe (6) hergestellt. Der stickstoffstabilisierte monomere Dimethylaluminiumalkoxy-Komplex und ein TMA-Addukt wurden aus Reaktion von 2,4,6-Tris(dimethylaminomethyl)phenol und unterschiedlichen stöchiometrischen Mengen TMA erhalten. Die NMR-Spektren und Festkörperstrukturen dieser Verbindungen wurden erforscht. Die intramolekular stickstoffstabilisierten Alkylaluminium-Verbindungen Diethyl(3-dimethylaminopropyl)aluminium (9), Dimethyl(2-dimethylaminobenzyl)-aluminium (13), Diethyl(2-dimethylaminobenzyl)aluminium (14) und Diethyl(2-diethylaminomethyl)phenyl-aluminium (15) wurden durch Metathesereaktion entsprechender Lithiumsalze mit Dimethyl- bzw. Diethylaluminiumchlorid erhalten. Sauerstoffstabilisierte Komplexe wurden ebenfalls aus lithiierten Vorläufern gewonnen. Die Umsetzung von 8-Methoxynaphth-1-yl-lithium mit Dimethylaluminiumchlorid ergab Methyl-bis(8-methoxy-naphth-1-yl)aluminium (16b). Dagegen reagierte 8-Methoxynaphth-1-yl-lithium mit Diethylaluminiumchlorid zu einem Gemisch aus Diethyl(8-methoxynaphth-1-yl)aluminium (17a) und Ethyl-bis(8-methoxynaphth-1-yl)aluminium (17b). 2-(2-Bromphenyl)furan (19) wurde durch Halogen-Metallaustausch mit Butyllithium und anschließender Salzmetathese zu Bis(2-furan-2-yl-phenyl)methylaluminium (20b) umgesetzt. Ausgehend von den synthetisierten (3-Z-Iod-3-allyl)dimethylaminen 22 und 23 wurden durch Grignard-Reaktion und Salzeliminierung die stickstoffstabilisierten Verbindungen (3-Dimethylamino-1-E-trimethylsilylpropenyl)dimethylaluminium (24) bzw. (3-Dimethyl-amino-1-E-phenylpropenyl)dimethylaluminium (25) hergestellt. Diisobutyl[2-(2-methoxy-phenyl)ethyl]aluminium (21) wurde durch Addition von Diisobutylaluminiumhydrid an 2-Methoxystyrol hergestellt und dessen Verhalten in Lösung NMR-spektroskopisch untersucht. Es wurden verschiedene Alkylaluminium-Komplexe mit dem dpp-BIAN-Liganden (1,2-Bis[(2,6-diisopropylphenyl)imino]acenaphthen) synthetisiert und mit Hilfe der Röntgen-Strukturanalyse untersucht. Die mono-Natriumsalze von dpp-BIAN wurden mit Dimethyl-, Diethyl- und Di-iso-butylaluminiumchlorid zu den monomeren Dialkylaluminium-(dpp-BIAN)-Komplexen 26 bis 28 umgesetzt. Der Methylkomplex 26 wurde mit ESR-Spektroskopie untersucht. Die Reaktion des Di-Natriumsalzes von dpp-BIAN mit zwei Äquivalenten Dimethyl- und Diethylaluminiumchlorid führten zu dem bimetallischen Komplex [Na(dpp-BIAN)AlMe2(C7H8)] (30) bzw. zu (dpp-BIAN)AlEt(Et2O) (29). Ein zu 30 isostruktureller Komplex, [Na(dpp-BIAN)AlEt2(C6H6)] (31), wurde aus Na2(dpp-BIAN) und einem Äquivalent Diethylaluminiumchlorid in Benzol erhalten. Die Diethyletheraddukte von 30 und 31 wurden mit der Röntgen-Strukturanalyse untersucht. Außerdem wurde der neue BIAN-Liganden 1,2-Bis(trimethylsilylimino)acenaphthen (34) synthetisiert.The thesis involve synthesis and characterisation of new organoaluminium complexes. The molecular structure of [dimethyl(2-dimethylaminoethoxy-1ĸO,N:2ĸO)aluminium-trimethylaluminium] (1) and bis[dimethyl(μ-O-3-dimethylaminopropoxy-ĸO,N)aluminium] (2) have been determined by x-ray structure analysis. Starting from 2-methylsulfanylethanol and thiophen-2-methanol and different stoichiometric amounts of trimethylaluminium (TMA) the sulphur stabilised dimeric dimethylaluminiumalkoxy complexes (5, 7) were synthesised, TMA adduct complex (6) respectively. The nitrogen stabilised monomeric dimethylaluminiumalkoxy complex and one TMA adduct were obtained by reaction of 2,4,6-tris(dimethylaminomethyl)phenol with different stoichiometric amounts of TMA. The NMR spectra and molecular structure of these new compounds have been investigated. The intramolecular nitrogen stabilised alkyl aluminium compounds diethyl(3-dimethylaminopropyl)aluminium (9), dimethyl(2-dimethylaminobenzyl)aluminium (13), diethyl(2-dimethylaminobenzyl)aluminium (14) and diethyl(2-diethylaminomethyl)phenyl-aluminium (15) were obtained by salt metathesis of corresponding lithium salts with dimethylaluminiumchloride, and diethylaluminiumchloride respectively. Oxygen stabilised complexes were also obtained from lithiated precursors. The reaction of 8-methoxynaphth-1-yl-lithium with dimethylaluminiumchloride yielded methyl-bis(8-methoxy-naphth-1-yl)aluminium (16b). 8-Methoxynaphth-1-yl-lithium reacted with diethylaluminiumchloride giving a mixture of diethyl(8-methoxynaphth-1-yl)aluminium (17a) and ethyl-bis(8-methoxynaphth-1-yl)aluminium (17b). 2-(2-Bromophenyl)furan (19) reacted via halogen metal exchange with butyl lithium followed by salt metathesis to give bis(2-furan-2-yl-phenyl)methylaluminium (20b). Starting from synthesised (Z)-3-iodo-N,N-dimethyl-3-prop-2-en-1-amine 22 and 23 the nitrogen stabilised compounds (3-dimethylamino-1-E-trimethylsilylpropenyl)dimethylaluminium (24) and (3-dimethyl-amino-1-E-phenylpropenyl)dimethylaluminium (25) were obtained via Grignard reaction and salt metathesis. Diisobutyl[2-(2-methoxyphenyl)ethyl]aluminium (21) was synthesised by addition of diisobutylaluminiumhydride to 2-methoxystyrene, whose behaviour in solution was investigated by NMR spectroscopy. Different alkyl aluminium complexes supported by the dpp-BIAN ligand (1,2-Bis[(2,6-diisopropylphenyl)imino]acenaphthene) were synthesised. The structures in solid state have been determined by x-ray structure analysis. The mono sodium salt of dpp-BIAN was reacted with dimethylaluminiumchloride, diethylaluminiumchloride and di-iso-butylaluminiumchloride giving the monomeric dialkylaluminium-(dpp-BIAN) complexes 26 to 28. The methyl complex 26 was investigated by EPR spectroscopy. Reaction of the di sodium salt of dpp-BIAN with two equivalents of dimethylaluminiumchloride and diethylaluminiumchloride led to the bimetallic complexes [Na(dpp-BIAN)AlMe2(C7H8)] (30) and (dpp-BIAN)AlEt(Et2O) (29) respectively. The similar coordination sphere of sodium like in 30 was obtained by reacting Na2(dpp-BIAN) with diethylaluminiumchloride giving [Na(dpp-BIAN)AlEt2(C6H6)] (31) in benzene. The structure of diethylether adducts of 30 and 31 were determined by x-ray structure analysis. The new BIAN ligand 1,2-bis(trimethylsilylimino)acenaphthene (34) was synthesised

    Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications

    No full text
    The effciency of organic solar cells is not only determined by their absorber system, but also strongly dependent on the performance of numerous interlayers and charge transport layers. In order to establish new custom-made materials, the study of structure-properties relationships is of great importance. This publication examines a series of naphthalenetetracarboxylic diimide molecules (NTCDI) with varying side-chain length intended for the use as n-dopable electron transport materials in organic solar cells. While all compounds basically share very similar absorption spectra and energy level positions in the desired range, the introduction of alkyl chains has a large impact on thin film growth and charge transport properties: both crystallization and the increase of conductivity by molecular doping are suppressed. This has a direct influence on the series resistance of corresponding solar cells comprising an NTCDI derivative as electron transport material (ETM) as it lowers the power conversion efficiency to << 1%. In contrast, using the side-chain free compound it is possible to achive an efficiency of 6.5%, which is higher than the efficiency of a comparable device comprising n-doped C-60 as standard ETM
    corecore