1,501 research outputs found

    X-ray and Radio Monitoring of GX 339-4 and Cyg X-1

    Full text link
    Previous work by Motch et al. (1985) suggested that in the low/hard state of GX339-4, the soft X-ray power-law extrapolated backward in energy agrees with the IR flux level. Corbel and Fender (2002) later showed that the typical hard state radio power-law extrapolated forward in energy meets the backward extrapolated X-ray power-law at an IR spectral break, which was explicitly observed twice in GX339-4. This has been cited as further evidence that jet synchrotron radiation might make a significant contribution to the observed X-rays in the hard state. We explore this hypothesis with a series of simultaneous radio/X-ray hard state observations of GX339-4. We fit these spectra with a simple, but remarkably successful, doubly broken power-law model that indeed requires a spectral break in the IR. For most of these observations, the break position as a function of X-ray flux agrees with the jet model predictions. We then examine the radio flux/X-ray flux correlation in Cyg X-1 through the use of 15 GHz radio data, obtained with the Ryle radio telescope, and Rossi X-ray Timing Explorer data, from the All Sky Monitor and pointed observations. We find evidence of `parallel tracks' in the radio/X-ray correlation which are associated with `failed transitions' to, or the beginning of a transition to, the soft state. We also find that for Cyg X-1 the radio flux is more fundamentally correlated with the hard, rather than the soft, X-ray flux.Comment: To Appear in the Proceedings of "From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales" (Amsterdam, July 2004). Eds. T Maccarone, R. Fender, L. H

    Exploring Accretion and Disk-Jet Connections in the LLAGN M81*

    Get PDF
    We report on a year-long effort to monitor the central supermassive black hole in M81 in the X-ray and radio bands. Using Chandra and the VLA, we obtained quasi-simultaneous observations of M81* on seven occasions during 2006. The X-ray and radio luminosity of M81* are not strongly correlated on the approximately 20-day sampling timescale of our observations, which is commensurate with viscous timescales in the inner flow and orbital timecales in a radially-truncated disk. This suggests that short-term variations in black hole activity may not be rigidly governed by the "fundamental plane", but rather adhere to the plane in a time-averaged sense. Fits to the X-ray spectra of M81* with bremsstrahlung models give temperatures that are inconsistent with the outer regions of very simple advection-dominated inflows. However, our results are consistent with the X-ray emission originating in a transition region where a truncated disk and advective flow may overlap. We discuss our results in the context of models for black holes accreting at small fractions of their Eddington limit, and the fundamental plane of black hole accretion.Comment: Accepted for publication in Ap

    The central parsecs of M87: jet emission and an elusive accretion disc

    Full text link
    We present the first simultaneous spectral energy distribution (SED) of M87 core at a scale of 0.4 arcsec (∼32 pc\sim 32\, \rm{pc}) across the electromagnetic spectrum. Two separate, quiescent, and active states are sampled that are characterized by a similar featureless SED of power-law form, and that are thus remarkably different from that of a canonical active galactic nuclei (AGN) or a radiatively inefficient accretion source. We show that the emission from a jet gives an excellent representation of the core of M87 core covering ten orders of magnitude in frequency for both the active and the quiescent phases. The inferred total jet power is, however, one to two orders of magnitude lower than the jet mechanical power reported in the literature. The maximum luminosity of a thin accretion disc allowed by the data yields an accretion rate of <6×10−5 M⊙ yr−1< 6 \times 10^{-5}\, \rm{M_\odot \, yr^{-1}}, assuming 10% efficiency. This power suffices to explain M87 radiative luminosity at the jet-frame, it is however two to three order of magnitude below that required to account for the jet's kinetic power. The simplest explanation is variability, which requires the core power of M87 to have been two to three orders of magnitude higher in the last 200 yr. Alternatively, an extra source of power may derive from black hole spin. Based on the strict upper limit on the accretion rate, such spin power extraction requires an efficiency an order of magnitude higher than predicted from magnetohydrodynamic simulations, currently in the few hundred per cent range.Comment: 18 pages, 6 figures. Accepted for publication in MNRA

    Simultaneous multiwavelength observations of V404 Cygni during its 2015 June outburst decay strengthen the case for an extremely energetic jet-base

    Get PDF
    We present results of multiband optical photometry of the black hole X-ray binary system V404 Cygni obtained using Wheaton College Observatory's 0.3m telescope, along with strictly simultaneous INTEGRAL and Swift observations during 2015 June 25.15--26.33 UT, and 2015 June 27.10--27.34 UT. These observations were made during the 2015 June outburst of the source when it was going through an epoch of violent activity in all wavelengths ranging from radio to γ\gamma-rays. The multiwavelength variability timescale favors a compact emission region, most likely originating in a jet outflow, for both observing epochs presented in this work. The simultaneous INTEGRAL/Imager on Board the Integral Satellite (IBIS) 20--40 keV light curve obtained during the June 27 observing run correlates very strongly with the optical light curve, with no detectable delay between the optical bands as well as between the optical and hard X-rays. The average slope of the dereddened spectral energy distribution was roughly flat between the ICI_C- and VV-bands during the June 27 run, even though the optical and X-ray flux varied by >>25×\times during the run, ruling out an irradiation origin for the optical and suggesting that the optically thick to optically thin jet synchrotron break during the observations was at a frequency larger than that of VV-band, which is quite extreme for X-ray binaries. These observations suggest that the optical emission originated very close to the base of the jet. A strong Hα\alpha emission line, probably originating in a quasi-spherical nebula around the source, also contributes significantly in the RCR_C-band. Our data, in conjunction with contemporaneous data at other wavelengths presented by other groups, strongly suggest that the jet-base was extremely compact and energetic during this phase of the outburst.Comment: 15 pages, 2 tables, 5 figures. Accepted for publication in Ap

    Galactic X-ray binary jets

    Full text link
    With their relatively fast variability time-scales, Galactic X-ray binaries provide an excellent laboratory to explore the physics of accretion and related phenomena, most notably outflows, over different regimes. After comparing the phenomenology of jets in black hole X-ray binary systems to that of neutron stars, here I discuss the role of the jet at very low Eddington ratios, and present preliminary results obtained by fitting the broadband spectral energy distribution of a quiescent black hole binary with a `maximally jet-dominated' model.Comment: Refereed version, accepted for publication in Astrophysics & Space Scienc

    The SED of Low-Luminosity AGNs at high-spatial resolution

    Full text link
    The inner structure of AGNs is expected to change below a certain luminosity limit. The big blue bump, footprint of the accretion disk, is absent for the majority of low-luminosity AGNs (LLAGNs). Moreover, recent simulations suggest that the torus, a keystone in the Unified Model, vanishes for nuclei with L_bol < 10^42 erg/s. However, the study of LLAGN is a complex task due to the contribution of the host galaxy, which light swamps these faint nuclei. This is specially critical in the IR range, at the maximum of the torus emission, due to the contribution of the old stellar population and/or dust in the nuclear region. Adaptive optics imaging in the NIR (VLT/NaCo) together with diffraction limited imaging in the mid-IR (VLT/VISIR) permit us to isolate the nuclear emission for some of the nearest LLAGNs in the Southern Hemisphere. These data were extended to the optical/UV range (HST), radio (VLA, VLBI) and X-rays (Chandra, XMM-Newton, Integral), in order to build a genuine spectral energy distribution (SED) for each AGN with a consistent spatial resolution (< 0.5") across the whole spectral range. From the individual SEDs, we construct an average SED for LLAGNs sampled in all the wavebands mentioned before. Compared with previous multiwavelength studies of LLAGNs, this work covers the mid-IR and NIR ranges with high-spatial resolution data. The LLAGNs in the sample present a large diversity in terms of SED shapes. Some of them are very well described by a self-absorbed synchrotron (e.g. NGC 1052), while some other present a thermal-like bump at ~1 micron (NGC 4594). All of them are significantly different when compared with bright Seyferts and quasars, suggesting that the inner structure of AGNs (i.e. the torus and the accretion disk) suffers intrinsic changes at low luminosities.Comment: 8 pages, 5 figures. To appear in the proceedings of "Astrophysics at High Angular Resolution" (AHAR 2011

    Functional Characterisation of Alpha-Galactosidase A Mutations as a Basis for a New Classification System in Fabry Disease

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The study has been supported partially by an unrestricted scientific grant from Shire Human Genetic Therapies (Germany

    Evidence for a compact jet dominating the broadband spectrum of the black hole accretor XTE J1550-564

    Full text link
    [abridged] The black hole X-ray binary XTE J1550-564 was monitored extensively at X-ray, optical and infrared wavelengths throughout its outburst in 2000. We show that it is possible to separate the optical/near-infrared (OIR) jet emission from the OIR disc emission. Focussing on the jet component, we find that as the source fades in the X-ray hard state, the OIR jet emission has a spectral index consistent with optically thin synchrotron emission (alpha ~ -0.6 to -0.7, where F_nu \propto nu^alpha). This jet emission is tightly and linearly correlated with the X-ray flux; L_OIR,jet \propto L_X^(0.98 +- 0.08) suggesting a common origin. This is supported by the OIR, X-ray and OIR to X-ray spectral indices being consistent with a single power law (alpha = -0.73). Ostensibly the compact, synchrotron jet could therefore account for ~ 100 % of the X-ray flux at low luminosities in the hard state. At the same time, (i) an excess is seen over the power law decay of the X-ray flux at the point in which the jet would start to dominate, (ii) the X-ray spectrum slightly softens, which seems to be due to a high energy cut-off or break shifting to a lower energy, and (iii) the X-ray rms variability increases. This may be the strongest evidence to date of synchrotron emission from the compact, steady jet dominating the X-ray flux of an X-ray binary. For XTE J1550-564, this is likely to occur within the luminosity range ~ (2 e-4 - 2 e-3) L_Edd on the hard state decline of this outburst. However, on the hard state rise of the outburst and initially on the hard state decline, the synchrotron jet can only provide a small fraction (~ a few per cent) of the X-ray flux. Both thermal Comptonization and the synchrotron jet can therefore produce the hard X-ray power law in accreting black holes.Comment: MNRAS accepted, 12 pages, 9 figure
    • …
    corecore