Previous work by Motch et al. (1985) suggested that in the low/hard state of
GX339-4, the soft X-ray power-law extrapolated backward in energy agrees with
the IR flux level. Corbel and Fender (2002) later showed that the typical hard
state radio power-law extrapolated forward in energy meets the backward
extrapolated X-ray power-law at an IR spectral break, which was explicitly
observed twice in GX339-4. This has been cited as further evidence that jet
synchrotron radiation might make a significant contribution to the observed
X-rays in the hard state. We explore this hypothesis with a series of
simultaneous radio/X-ray hard state observations of GX339-4. We fit these
spectra with a simple, but remarkably successful, doubly broken power-law model
that indeed requires a spectral break in the IR. For most of these
observations, the break position as a function of X-ray flux agrees with the
jet model predictions. We then examine the radio flux/X-ray flux correlation in
Cyg X-1 through the use of 15 GHz radio data, obtained with the Ryle radio
telescope, and Rossi X-ray Timing Explorer data, from the All Sky Monitor and
pointed observations. We find evidence of `parallel tracks' in the radio/X-ray
correlation which are associated with `failed transitions' to, or the beginning
of a transition to, the soft state. We also find that for Cyg X-1 the radio
flux is more fundamentally correlated with the hard, rather than the soft,
X-ray flux.Comment: To Appear in the Proceedings of "From X-ray Binaries to Quasars:
Black Hole Accretion on All Mass Scales" (Amsterdam, July 2004). Eds. T
Maccarone, R. Fender, L. H